Unknown

Dataset Information

0

Pharmacokinetics and Oxidation Parameters in Volunteers Supplemented with Microencapsulated Docosahexaenoic Acid.


ABSTRACT: Context:Docosahexaenoic acid (DHA) is an omega-3 fatty acid essential for cardiovascular health, brain development, and reproductive function. Due to hydrophobicity and low DHA bioavailability, new microencapsulated DHA formulations are under development. Aim:This study aims to evaluate DHA pharmacokinetics (PKs) and biological oxidation parameters in volunteers ingesting a newly developed lutein-containing lycosomal formulation of DHA (LF-DHA). Materials and Methods:A total of 32 healthy volunteers (40-65 years old) with signs of oxidative stress (OS) and subclinical hypoxia were orally supplemented for a month with 250 mg of regular DHA (1st group) or a combination of lutein (7.0 mg) and zeaxanthin (1.4 mg) (2nd group). The third group received regular DHA (250 mg) co-ingested with lutein/zeaxanthin (7.0/1.4 mg), whereas the 4th group was given LF-DHA containing lutein/zeaxanthin (7.0/1.4 mg). PK, OS, and oxygenation parameters were analyzed. Results:LF-DHA improved the PKs of DHA enhancing its serum concentrations time dependently by 34.6% and 94.1% after 2nd and 4th weeks, respectively. DHA and lutein ingested either alone or simultaneously as two separate formulations reduced the levels of OS markers. However, LF-DHA inhibited the malonicdialdehyde (MDA) and oxidized low-density lipoprotein values were better than other formulations. LF-DHA also enhanced the plasma oxygen and tissue oxygen saturation. This effect was significantly higher than in other groups. Conclusion:LF-DHA eliminates the need in high-dose DHA supplementation protocols and confers a higher DHA bioavailability, thereby improving the parameters of biological oxidation and tissue respiration in affected individuals.

SUBMITTER: Petyaev IM 

PROVIDER: S-EPMC6082003 | biostudies-literature | 2018 Jul-Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacokinetics and Oxidation Parameters in Volunteers Supplemented with Microencapsulated Docosahexaenoic Acid.

Petyaev Ivan M IM   Chalyk Natalya E NE   Klochkov Victor A VA   Pristensky Dmitry V DV   Chernyshova Marina P MP   Kyle Nigel H NH   Bashmakov Yuriy K YK  

International journal of applied & basic medical research 20180701 3


<h4>Context</h4>Docosahexaenoic acid (DHA) is an omega-3 fatty acid essential for cardiovascular health, brain development, and reproductive function. Due to hydrophobicity and low DHA bioavailability, new microencapsulated DHA formulations are under development.<h4>Aim</h4>This study aims to evaluate DHA pharmacokinetics (PKs) and biological oxidation parameters in volunteers ingesting a newly developed lutein-containing lycosomal formulation of DHA (LF-DHA).<h4>Materials and methods</h4>A tota  ...[more]

Similar Datasets

| S-EPMC5222371 | biostudies-literature
| S-EPMC7122748 | biostudies-literature
| S-EPMC4477626 | biostudies-literature
| S-EPMC5622735 | biostudies-literature
| S-EPMC10731657 | biostudies-literature
| S-EPMC5610496 | biostudies-literature
| S-EPMC10264945 | biostudies-literature
| S-EPMC7036065 | biostudies-literature
| S-EPMC8742557 | biostudies-literature
| S-EPMC1887599 | biostudies-literature