Development and characterization of a polarized human endometrial cell epithelia in an air-liquid interface state.
Ontology highlight
ABSTRACT: Human endometrial epithelia undergo injury repair and regeneration with the menstrual cycle; however, mechanisms underpinning the roles of endometrial epithelial cells in endometrial lesions and regeneration remain incompletely understood, mainly owing to the difficulty in the isolation and expansion of primary endometrial epithelial cells and the lack of reliable models for in vitro and in vivo studies. In this report, we sought to improve methods for the isolation and expansion of human endometrial epithelial cells with a Rho-associated protein kinase (ROCK) inhibitor-modified medium and subsequently characterize endometrial epithelium generated with primary cells cultured in an air-liquid interface (ALI) state. Immunocytochemistry staining revealed the expression of epithelial cellular adhesion molecule (EpCam) and stage-specific embryonic antigen-1 (SSEA-1) but a lack of CD13 in endometrial epithelial cells. Meanwhile, a large number of proliferative Ki67+ cells were observed in isolated epithelial cells. Importantly, the EpCam+/CD13- cells were capable of forming spheroids, a characteristic of epithelial stem/progenitor cells. Interestingly, these cells also exhibited a capacity to reconstitute epithelial layers in an ALI state. Morphological analysis revealed mucosal secretion of differentiated epithelial cells with cilia and microvilli in ALI epithelial cells as determined by electronic microscopy. Immunoblotting assay further demonstrated the expression of endometrial epithelial cell markers keratin 17/19 and EpCam and stem cell marker OCT3/4 but not stromal cell marker Vimentin protein and CD13 in cell expansions. Furthermore, molecular analysis also showed that the exposure of cells to estrogen elevated the expression of estrogen receptor and progesterone receptors in ALI cultures. Our results shed light on the possibility of expanding sufficient numbers of endometrial epithelial cells for stem cell biology studies, and they provide a feasible and alternative model that can recapitulate the characteristics and physiology of endometrial epithelium in vivo.
SUBMITTER: Li D
PROVIDER: S-EPMC6085666 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA