Unknown

Dataset Information

0

Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.


ABSTRACT: Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultralight resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultrasensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ?150 nm. These advances in detection and fabrication allow us to reach [Formula: see text] displacement sensitivity. Thermal vibrations cooled cryogenically at 300 mK are detected with a signal-to-noise ratio as high as 17 dB. We demonstrate [Formula: see text] force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step toward imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.

SUBMITTER: de Bonis SL 

PROVIDER: S-EPMC6089494 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.

de Bonis S L SL   Urgell C C   Yang W W   Samanta C C   Noury A A   Vergara-Cruz J J   Dong Q Q   Jin Y Y   Bachtold A A  

Nano letters 20180731 8


Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultralight resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultrasensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate e  ...[more]

Similar Datasets

| S-EPMC3511078 | biostudies-literature
| S-EPMC5460215 | biostudies-literature
| S-EPMC4180807 | biostudies-other
| S-EPMC4443444 | biostudies-literature
| S-EPMC3292278 | biostudies-literature
| S-EPMC5055386 | biostudies-literature
| S-EPMC9178712 | biostudies-literature
| S-EPMC4654508 | biostudies-literature
| S-EPMC9585649 | biostudies-literature
| S-EPMC6689019 | biostudies-literature