Unknown

Dataset Information

0

Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation.


ABSTRACT: The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex susceptibility become invalid. Here we report a methodology to measure the complex optical susceptibility of individual 1D materials by an elliptical-polarization-based optical homodyne detection. This method is based on the accurate manipulation of interference between incident left- (right-) handed elliptically polarized light and the scattering light, which results in the opposite (same) contribution of the real and imaginary susceptibility in two sets of spectra. We successfully demonstrate its application in determining complex susceptibility of individual chirality-defined carbon nanotubes in a broad optical spectral range (1.6-2.7?eV) and under different environments (suspended and in device). This full characterization of the complex optical responses should accelerate applications of various 1D nanomaterials in future photonic, optoelectronic, photovoltaic, and bio-imaging devices.

SUBMITTER: Yao F 

PROVIDER: S-EPMC6107641 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation.

Yao Fengrui F   Liu Can C   Chen Cheng C   Zhang Shuchen S   Zhao Qiuchen Q   Xiao Fajun F   Wu Muhong M   Li Jiaming J   Gao Peng P   Zhao Jianlin J   Bai Xuedong X   Maruyama Shigeo S   Yu Dapeng D   Wang Enge E   Sun Zhipei Z   Zhang Jin J   Wang Feng F   Liu Kaihui K  

Nature communications 20180823 1


The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex susceptibility become invalid. Here we report a methodology to measure the complex optical susceptibility of individual 1D materials by an elliptical-polarization-based optical homodyne detection. This method is based on the accurate manipulation of  ...[more]

Similar Datasets

| S-EPMC5317278 | biostudies-literature
| S-EPMC7250915 | biostudies-literature
| S-EPMC6425041 | biostudies-literature
| S-EPMC4351562 | biostudies-literature
| S-EPMC2383959 | biostudies-literature
| S-EPMC6083417 | biostudies-literature
| S-EPMC4658524 | biostudies-literature
| S-EPMC8099878 | biostudies-literature
| S-EPMC7283472 | biostudies-literature
| S-EPMC7371339 | biostudies-literature