Heat Shock Causes a Reversible Increase in RNA Polymerase II Occupancy Downstream of mRNA Genes, Consistent with a Global Loss in Transcriptional Termination.
Ontology highlight
ABSTRACT: Cellular transcriptional programs are tightly controlled but can profoundly change in response to environmental challenges or stress. Here we describe global changes in mammalian RNA polymerase II (Pol II) occupancy at mRNA genes in response to heat shock and after recovery from the stress. After a short heat shock, Pol II occupancy across thousands of genes decreased, consistent with widespread transcriptional repression, whereas Pol II occupancy increased at a small number of genes in a manner consistent with activation. Most striking, however, was loss of the Pol II peak near the 3' ends of mRNA genes, coupled to a gain in polymerase occupancy extending tens of kilobases downstream of 3' ends. Typical patterns of 3' end occupancy were largely restored 60 min after cells returned to normal growth temperatures. These changes in polymerase occupancy revealed a heat shock-induced loss of normal termination, which was potent, global, and reversible. The occupancy of the termination factor CPSF73 at the 3' ends of representative genes was reduced after heat shock, suggesting a mechanism for impaired termination. The data support a model in which heat shock induces widespread repression of transcriptional initiation and loss of transcription termination, which reverses as cells return to homeostasis.
SUBMITTER: Cardiello JF
PROVIDER: S-EPMC6113597 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA