Unknown

Dataset Information

0

Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.


ABSTRACT: Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [68Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H2O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)]- (MIII= GaIII, CeIII, EuIII, YIII, and LuIII) complexes were investigated in H2O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H2O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K1H and log K2H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)]- complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H2DOTA)]+ intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H2O (*M(HL) kH2O) and OH- (*M(HL) kOH) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) kH2O values increase from CeIII to LuIII. However, the log KM(HL)H protonation constants, analogous to the log KH2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

SUBMITTER: Perez-Malo M 

PROVIDER: S-EPMC6121814 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improved Efficacy of Synthesizing *M<sup>III</sup>-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

Pérez-Malo Marylaine M   Szabó Gergely G   Eppard Elisabeth E   Vagner Adrienn A   Brücher Ernő E   Tóth Imre I   Maiocchi Alessandro A   Suh Eul Hyun EH   Kovács Zoltán Z   Baranyai Zsolt Z   Rösch Frank F  

Inorganic chemistry 20180510 10


Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [<sup>68</sup>Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiome  ...[more]

Similar Datasets

| S-EPMC6539547 | biostudies-literature
| S-EPMC1185100 | biostudies-other
| S-EPMC5425779 | biostudies-literature
| S-EPMC10574143 | biostudies-literature
| S-EPMC10591470 | biostudies-literature
2009-02-27 | GSE13866 | GEO
| S-EPMC7453028 | biostudies-literature
| S-EPMC8158830 | biostudies-literature
| S-EPMC5811077 | biostudies-literature
| S-EPMC9169048 | biostudies-literature