RNA-seq Analysis Reveals Gene Expression Profiling of Female Fertile and Sterile Ovules of PinusTabulaeformis Carr. during Free Nuclear Mitosis of the Female Gametophyte.
Ontology highlight
ABSTRACT: The development of the female gametophyte (FG) is one of the key processes of life cycle alteration between the haploid gametophyte and the diploid sporophytes in plants and it is required for successful seed development after fertilization. It is well demonstrated that free nuclear mitosis (FNM) of FG is crucial for the development of the ovule. However, studies of the molecular mechanism of ovule and FG development focused mainly on angiosperms, such as Arabidopsis thaliana and further investigation of gymnosperms remains to be completed. Here, Illumina sequencing of six transcriptomic libraries obtained from developing and abortive ovules at different stages during free nuclear mitosis of magagametophyte (FNMM) was used to acquire transcriptome data and gene expression profiles of Pinus tabulaeformis. Six cDNA libraries generated a total of 71.0 million high-quality clean reads that aligned with 63,449 unigenes and the comparison between developing and abortive ovules identified 7174 differentially expressed genes (DEGs). From the functional annotation results, DEGs involved in the cell cycle and phytohormone regulation were highlighted to reveal their biological importance in ovule development. Furthermore, validation of DEGs from the phytohormone signal transduction pathway was performed using quantitative real-time PCR analysis, revealing the dynamics of transcriptional networks and potential key components in the regulation of FG development in P. tabulaeformis were identified. These findings provide new insights into the regulatory mechanisms of ovule development in woody gymnosperms.
SUBMITTER: Yao Y
PROVIDER: S-EPMC6122031 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA