Silkworm genetic sexing through W chromosome-linked, targeted gene integration.
Ontology highlight
ABSTRACT: Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)-mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
SUBMITTER: Zhang Z
PROVIDER: S-EPMC6126770 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA