Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson's disease.
Ontology highlight
ABSTRACT: Although motor subtypes of Parkinson's disease (PD), such as tremor dominant (TD) and postural instability and gait difficulty (PIGD), have been defined based on symptoms since the mid-1990s, no underlying neural correlates of these clinical subtypes have yet been identified. Very limited data exist regarding the electrophysiological abnormalities within the subthalamic nucleus (STN) that likely accompany the symptom severity or the phenotype of PD. Here, we show that activity in subbands of local field potentials (LFPs) recorded with multiple microelectrodes from subterritories of STN provide distinguishing neurophysiological information about the motor subtypes of PD. We studied 24 patients with PD and found distinct patterns between TD (n = 13) and PIGD (n = 11) groups in high-frequency oscillations (HFOs) and their nonlinear interactions with beta band in the superior and inferior regions of the STN. Particularly, in the superior region of STN, the power of the slow HFO (sHFO) (200-260 Hz) and the coupling of its amplitude with beta-band phase were significantly stronger in the TD group. The inferior region of STN exhibited fast HFOs (fHFOs) (260-450 Hz), which have a significantly higher center frequency in the PIGD group. The cross-frequency coupling between fHFOs and beta band in the inferior region of STN was significantly stronger in the PIGD group. Our results indicate that the spatiospectral dynamics of STN-LFPs can be used as an objective method to distinguish these two motor subtypes of PD. These observations might lead to the development of sensing and stimulation strategies targeting the subterritories of STN for the personalization of deep-brain stimulation (DBS).
SUBMITTER: Telkes I
PROVIDER: S-EPMC6130371 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA