Phenolic metabolites, biological activities, and isolated compounds of Terminalia muelleri extract.
Ontology highlight
ABSTRACT: Terminalia muelleri Benth. (Combretaceae), is rich with phenolics that have antioxidant and cytotoxic activities. No screening studies were published before on T. muelleri.The study focused on isolation and identification of secondary metabolites from aqueous methanol leaf extract of T. muelleri and evaluation of its biological activities.The n-butanol extract was chromatographed on polyamide 6, and eluted with H2O/MeOH mixtures of decreasing polarity, then separated by different chromatographic tools that yielded 10 phenolic compounds. The antioxidant activity of the extract was evaluated by investigating its total phenolic and flavonoid content and DPPH scavenging effectiveness. The extract and the two acylated flavones were evaluated for their anticancer activity towards MCF-7 and PC3 cancer cell lines. Molecular docking study of the acylated flavones was performed against topoisomerase enzyme.Two acylated flavonoids, apigenin-8-C-(2?-O-galloyl) glucoside 1 and luteolin-8-C-(2?-O-galloyl) glucoside 2, were isolated and identified for the second time in nature, with eight tannins (3-10), from the leaves of T. muelleri. The extract and compound 10 showed the most significant antioxidant activity (IC50?=?3.55 and 6.34??g/mL), respectively. The total extract and compound 2 demonstrated cytotoxic effect against MCF-7 with IC50?=?29.7 and 45.2??g/mL respectively, while compound 1 showed cytotoxic effect against PC3 (IC50?=?40.8??g/mL). The docking study of compounds 1 and 2 confirmed unique binding mode in the active site of human DNA topoisomerase enzyme.Terminalia muelleri is a promising medicinal plant as it possesses high antioxidant activity and moderate cytotoxic activity against MCF-7.
<h4>Context</h4>Terminalia muelleri Benth. (Combretaceae), is rich with phenolics that have antioxidant and cytotoxic activities. No screening studies were published before on T. muelleri.<h4>Objective</h4>The study focused on isolation and identification of secondary metabolites from aqueous methanol leaf extract of T. muelleri and evaluation of its biological activities.<h4>Materials and methods</h4>The n-butanol extract was chromatographed on polyamide 6, and eluted with H<sub>2</sub>O/MeOH m ...[more]
Project description:The aim of this study was to evaluate the total phenolic and flavonoid content, and the in vitro antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, cytotoxicity, and antiprotozoal activities of the Algerian plant Cytisus villosus Pourr. (Syn. Cytisus triflorus L'Hérit.). Additionally, the radioligand displacement affinity on opioid and cannabinoid receptors was assessed for the extracts and isolated pure compounds. The hydro alcoholic extract of the aerial part of C. villosus was partitioned with chloroform (CHCl3), ethyl acetate (EtOAc), and n-butanol (n-BuOH). The phenolic content of the C. villosus extracts was evaluated using a modified Folin-Ciocalteau method. The total flavonoid content was measured spectrometrically using the aluminum chloride colorimetric assay. The known flavonoids genistein (1), chrysin (2), chrysin-7-O-β-d-glucopyranoside (3), and 2″-O-α-l-rhamnosylorientin (4) were isolated. The antioxidant activities of the extracts and isolated compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant activity (CAA) assays. The plant extracts showed moderate antioxidant activity. EtOAc and n-BuOH extracts showed moderate anti-inflammatory activity through the inhibition of induced nitric oxide synthase (iNOS) with IC50 values of 48 and 90 µg/mL, respectively. The isolated pure compounds 1 and 3 showed good inhibition of Inducible nitric oxide synthase (iNOS) with IC50 values of 9 and 20 µg/mL, respectively. Compounds 1 and 2 exhibited lower inhibition of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) with IC50 values of 28 and 38 µg/mL, respectively. Furthermore, the extracts and isolated pure compounds have been shown to exhibit low affinity for cannabinoid and opioid receptors. Finally, n-BuOH extract was a potent inhibitor of Trypanosoma brucei with IC50 value of 7.99 µg/mL and IC90 value of 12.61 µg/mL. The extracts and isolated compounds showed no antimicrobial, antimalarial nor antileishmanial activities. No cytotoxic effect was observed on cancer cell lines. The results highlight this species as a promising source of anti-inflammatory and antitrypanosomal agents.
Project description:Rhus species are known in traditional medicine for their therapeutic virtue and their extracts showed numerous important properties including antimalarial, antimicrobial, antiviral, and hypoglycemic and anticonvulsant activities. Rhus tripartitum (Ucria) is a medicinal plant widely used in Tunisia folk medicine against chronic diarrhea and gastric ulcer. This study was designed to examine in vitro and ex vivo antioxidant, anti-inflammatory and anticancer activities of four extracts of Rhus tripartitum root cortex with increasing solvent polarity (hexane, dichloromethane, methanol and water). HPLC was used to identify and quantify phenolic compounds in Rhus extract. Water extract showed the highest antioxidant activity using oxygen radical absorbance capacity (ORAC method) with 8.95 ± 0.47 µmol Trolox/mg and a cell based-assay with 0.28 ± 0.12 µmol Trolox/mg as compared to the other fractions. Moreover, methanol extract displayed the strongest anti-cancer activity against human lung carcinoma (A-549) and colon adenocarcinoma cell lines (DLD-1) with an IC50 value of 60.69 ± 2.58 and 39.83 ± 4.56 µg/ml (resazurin test) and 44.52 ± 5.96 and 55.65 ± 6.00 µg/ml (hoechst test), respectively. Besides, the highest anti-inflammatory activity, inhibiting nitric oxide (NO) release, was exhibited by dichloromethane extract with 31.5 % at 160 µg/ml in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The HPLC analysis showed that catechol and kaempferol were the major phenolics. These data suggest the richness of all fractions of Ucria root on interesting bioactive molecules with different polarity and confirm the known traditional therapeutics virtues of this species for the treatment of dysentery, diarrhea and gastric ulcer.
Project description:Five phenolic compounds, namely N-trans-coumaroyltyramine (1), N-trans-feruloyltyramine (2), N-trans-feruloyloctopamine (3), 5,7-dihydroxy-8-methoxyflavone (4) and (3S)3,5,4'-trihydroxy-7-methoxy-6-methylhomoisoflavanone (5), were isolated from the fibrous roots of Liriope muscari (Liliaceae). Compounds 2-5 were isolated for the first time from the Liriope genus. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The structure-activity relationships of compounds 1-3 are discussed.
Project description:BackgroundAngelica shikokiana is a Japanese medicinal herb that is included among food and drug preparations protecting against cancer; however, there is no previous report about the cytotoxicity of A. shikokiana or its bioactive compounds.ObjectiveThis study was designed to investigate the cytotoxic activities of A. shikokiana methanol extract (AME) and its isolated compounds and to identify the molecular mechanisms of the cytotoxicity.Materials and methodsCytotoxicity and selectivity was investigated by measuring the IC50 values on five cancer cell lines; human hepatocellular carcinoma, rhabdomyosarcoma (RD), colorectal carcinoma, human epithelioma and human breast adenocarcinoma and one normal cell line; human lung fibroblasts. The effects on tubulin polymerization and histone deacetylase 8 (HDAC8), were examined to determine the mechanism of cytotoxicity. Docking study was designed to examine the binding affinity to the target molecules.ResultsMethanol extract and some of its isolated coumarins and flavonoids showed potent, selective cytotoxicity against cancer cell lines. AME and all isolated compounds inhibited tubulin polymerization. Angelicin and kaempferol-3-O-rutinoside were the most active compounds. Phenolic compounds and furanocoumarins showed binding affinity to colchicine binding site rather than the vinblastine binding site of tubulin microtubules. On the other side, quercetin, kaempferol, luteolin, chlorogenic acid, and methyl chlorogenate exhibited the strongest activity against HDAC8 and the highest affinity to trichostatin A binding site.ConclusionThese findings provide the first scientific evidence of the cytotoxicity of AME through inhibition of tubulin polymerization and HDAC8 activity through its coumarin and flavonoid content.SummaryThe present study provides for the first time a clue for the cytotoxic activities of the AME. Our results indicate that the cytotoxic activities are partially related to the ability of AME to inhibit tubulin polymerization and HDAC8 activity. Isolated compounds; Angelicin and kaempferol-3-O-rutinoside showed the strongest inhibition of tubulin polymerization through binding to colchicine binding domain of tubulin microtubules. Phenolic compounds; quercetin, luteolin, kaempferol, chlorogenic acid and methyl chlorogenate exhibited a strong inhibition of HDAC8 through binding to TSA binding site. This, however, further detailed pharmacological and in vivo studies should be the next step in evaluating the cytotoxic activities of AME and its active compounds that are currently ongoing. Abbreviations used: AME: Methanol extract of the aerial part of A. shikokiana, HDACs: Histone deacetylases,HDAC8: Histone deacetylase 8.
Project description:Fungal endophytes have remarkable potential to produce bioactive compounds with numerous pharmacological significance that are used in various disease management and human welfare. In the current study, a total of eight fungal endophytes were isolated from the leaf tissue of Amoora rohituka, and out of which ethyl acetate (EA) extract of Penicillium oxalicum was found to exhibit potential antioxidant activity against DPPH, nitric oxide, superoxide anion and hydroxyl free radicals with EC50 values of 178.30 ± 1.446, 75.79 ± 0.692, 169.28 ± 0.402 and 126.12 ± 0.636 µg/mL, respectively. The significant antioxidant activity of EA extract of P. oxalicum is validated through highest phenolic and flavonoid content, and the presence of unique bioactive components observed through high-performance thin layer chromatography (HPTLC) fingerprinting. Moreover, EA extract of P. oxalicum also displayed substantial anti-proliferative activity with IC50 values of 56.81 ± 0.617, 37.24 ± 1.26 and 260.627 ± 5.415 µg/mL against three cancer cells HuT-78, MDA-MB-231 and MCF-7, respectively. Furthermore, comparative HPTLC fingerprint analysis and antioxidant activity of P. oxalicum revealed that fungal endophyte P. oxalicum produces bioactive compounds in a host-dependent manner. Therefore, the present study signifies that fungal endophyte P. oxalicum associated with the leaf of A. rohituka could be a potential source of bioactive compounds with antioxidant and anticancer activity.
Project description:Pumpkin leaves (Cucurbita moschata Duchesne ex Poir.) are popularly consumed in Sub-Saharan Africa and Asia. Blanching the leaves before drying is a method of preservation during off-season. In this study, different blanching treatments and media are used to test the changes in non-targeted phenolic compounds, antioxidant capacity (FRAP and ABTS activity), in vitro α-glucosidase activity and cell cytotoxicity of pumpkin leaves. Steam blanching in plain water led to the highest retention of total phenolic content and reduced the loss of quercetin 3-glucoside 7-rhamnoside (Rutin), kaempferol 7-neohesperidoside, isoorientin 2″-O-rhamnoside, isorhamnetin-3-O-rutinoside, quercetin 3-galactoside, coumaroyl glucaric acid, isorhamnetin-3-galactoside-6″-rhamnoside, 2-caffeoylisocitric acid, quercetin 3-galactoside 7-rhamnoside by (3.04%), (7.37%), (10.65%), (10.97%), (14.88%), (16.1%), (16.73%), (18.88%), and (23.15%), respectively, and coumaroyl isocitrate increased by 14.92%. Candidate markers, 2-O-caffeoylglucaric acid, 2-(E)-O-feruloyl-D-galactaric acid, quercetin 3-galactoside 7-rhamnoside (rutin) and unidentified compounds ([(M-H) 677.28 and at RT 21.78] were responsible for the separation of the steam blanched samples in plain water from the other blanching treatments. Steam blanching in plain water increased the antioxidant capacity (FRAP and ABTS activity). There were no cytotoxic effect or inhibitory effect of α-glucosidase activity detected in the raw or blanched pumpkin leaves. Thus, this study recommends steam blanching in plain water for African cuisine, and confirms it is safe to consume pumpkin leaves frequently.
Project description:Mentha species are widely used as food, medicine, spices, and flavoring agents. Thus, chemical composition is an important parameter for assessing the quality of mints. In general, the contents of menthol, menthone, eucalyptol, and limonene comprise one of the major parameters for assessing the quality of commercially important mints. Building further on the phytochemical characterization of the quality of Mentha species, this work was focused on the composition of phenolic compounds in methanolic extracts. Thirteen Mentha species were grown under the same environmental conditions, and their methanolic extracts were subjected to the LC-MS/MS (liquid chromatography-tandem mass spectrometry) profiling of phenolics and the testing their biological activities, i.e., antioxidant and tyrosinase inhibition activities, which are important features for the cosmetic industry. The total phenolic content (TPC) ranged from 14.81 ± 1.09 mg GAE (gallic acid equivalents)/g for Mentha cervina to 58.93. ± 8.39 mg GAE/g for Mentha suaveolens. The antioxidant activity of examined Mentha related with the content of the phenolic compounds and ranged from 22.79 ± 1.85 to 106.04 ± 3.26 mg TE (Trolox equivalents)/g for M. cervina and Mentha x villosa, respectively. Additionally, Mentha pulegium (123.89 ± 5.64 mg KAE (kojic acid equivalents)/g) and Mentha x piperita (102.82 ± 15.16 mg KAE/g) showed a strong inhibition of the enzyme tyrosinase, which is related to skin hyperpigmentation. The most abundant compound in all samples was rosmarinic acid, ranging from 1363.38 ± 8323 to 2557.08 ± 64.21 μg/g. In general, the levels of phenolic acids in all examined mint extracts did not significantly differ. On the contrary, the levels of flavonoids varied within the species, especially in the case of hesperidin (from 0.73 ± 0.02 to 109. 39 ± 2.01 μg/g), luteolin (from 1.84 ± 0.11 to 31.03 ± 0.16 μg/g), and kaempferol (from 1.30 ± 0.17 to 33.68 ± 0.81 μg/g). Overall results indicated that all examined mints possess significant amounts of phenolic compounds that are responsible for antioxidant activity and, to some extent, for tyrosinase inhibition activity. Phenolics also proved to be adequate compounds, together with terpenoids, for the characterization of Mentha sp. Additionally, citrus-scented Mentha x villosa could be selected as a good candidate for the food and pharmaceutical industry, especially due its chemical composition and easy cultivation, even in winter continental conditions.
Project description:Phellinus Quél is one of the largest genera of Hymenochaetaceae; it comprises about 220 species widely distributed on Earth. Most Phellinus species are lignicolous mushrooms that accumulate bioactive compounds. This research studied the phenolic composition of Phellinus spp. and their relationship with antibacterial and antiviral capacity. Phenolics were extracted from Phellinus badius, P. fastuosus, and P. grenadensis; their antiviral and antibacterial activities were evaluated against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Escherichia coli O157: H7; and the bacteriophages MS2 and Φ- × 174. Gallic acid, chlorogenic acid, caffeic acid, epicatechin, ferulic acid, catechin, 1,3-dicaffeoylquinic acid, p-coumaric acid, and rutin were found in different proportions among Phellinus spp. Total phenolic content ranged from 96 to 209 mg GAE/g, and total flavonoids from 10 to 27 QE/g. The minimum inhibitory concentrations of P. badius, P. grenadensis, and P. fastuosus against E. coli O157: H7 were 13, 20, and 27 mg/mL, against S. enterica were 20, 30, and 15 mg/mL, and against L. monocytogenes were 10, 15, and 25 mg/mL, respectively. The phenolic content was better correlated with the antibacterial effect against E. coli O157: H7 and L. monocytogenes (r = 0.8-0.9), but not against S. enterica (r = 0.05). The antiviral activity of the extracts (0.9 mg/mL) was 29 to 41% against MS2 and 27 to 38% for Φ-X174 virus (r = 0.8-0.9). In silico analysis showed binding energy values of - 7.9 and - 4.8 kcal/mol between the identified phenolic compounds and the M and G proteins of each virus. The antibacterial and antiviral properties of Phellinus species were correlated with the phenolic content.
Project description:Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1-8), moscatilin (1), gigantol (3), lusianthridin (4), and dendroflorin (6) showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.
Project description:In this study, for the environmental development, the antifungal, antibacterial, and antioxidant activities of a water extract of flowers from Acacia saligna (Labill.) H. L. Wendl. were evaluated. The extract concentrations were prepared by dissolving them in 10% DMSO. Wood samples of Melia azedarach were treated with water extract, and the antifungal activity was examined at concentrations of 0%, 1%, 2%, and 3% against three mold fungi; Fusarium culmorum MH352452, Rhizoctonia solani MH352450, and Penicillium chrysogenum MH352451 that cause root rot, cankers, and green fruit rot, respectively, isolated from infected Citrus sinensis L. Antibacterial evaluation of the extract was assayed against four phytopathogenic bacteria, including Agrobacterium tumefaciens, Enterobacter cloacae, Erwinia amylovora, and Pectobacterium carotovorum subsp. carotovorum, using the micro-dilution method to determine the minimum inhibitory concentrations (MICs). Further, the antioxidant capacity of the water extract was measured via 2,2'-diphenylpicrylhydrazyl (DPPH). Phenolic and flavonoid compounds in the water extract were analyzed using HPLC: benzoic acid, caffeine, and o-coumaric acid were the most abundant phenolic compounds; while the flavonoid compounds naringenin, quercetin, and kaempferol were identified compared with the standard flavonoid compounds. The antioxidant activity of the water extract in terms of IC50 was considered weak (463.71 μg/mL) compared to the standard used, butylated hydroxytoluene (BHT) (6.26 μg/mL). The MIC values were 200, 300, 300, and 100 µg/mL against the growth of A. tumefaciens, E. cloacae, E. amylovora, and P. carotovorum subsp. carotovorum, respectively, which were lower than the positive control used (Tobramycin 10 μg/disc). By increasing the extract concentration, the percentage inhibition of fungal mycelial was significantly increased compared to the control treatment, especially against P. chrysogenum, suggesting that the use of A. saligna flower extract as an environmentally friendly wood bio-preservative inhibited the growth of molds that cause discoloration of wood and wood products.