Ontology highlight
ABSTRACT:
SUBMITTER: Betancur J
PROVIDER: S-EPMC6135711 | biostudies-literature | 2018 Nov
REPOSITORIES: biostudies-literature
Betancur Julian J Commandeur Frederic F Motlagh Mahsaw M Sharir Tali T Einstein Andrew J AJ Bokhari Sabahat S Fish Mathews B MB Ruddy Terrence D TD Kaufmann Philipp P Sinusas Albert J AJ Miller Edward J EJ Bateman Timothy M TM Dorbala Sharmila S Di Carli Marcelo M Germano Guido G Otaki Yuka Y Tamarappoo Balaji K BK Dey Damini D Berman Daniel S DS Slomka Piotr J PJ
JACC. Cardiovascular imaging 20180314 11
OBJECTIVES:The study evaluated the automatic prediction of obstructive disease from myocardial perfusion imaging (MPI) by deep learning as compared with total perfusion deficit (TPD). BACKGROUND:Deep convolutional neural networks trained with a large multicenter population may provide improved prediction of per-patient and per-vessel coronary artery disease from single-photon emission computed tomography MPI. METHODS:A total of 1,638 patients (67% men) without known coronary artery disease, unde ...[more]