Unknown

Dataset Information

0

Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal-Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts.


ABSTRACT: We report the use of two earth abundant molybdenum sulfide-based cocatalysts, Mo3S132- clusters and 1T-MoS2 nanoparticles (NPs), in combination with the visible-light active metal-organic framework (MOF) MIL-125-NH2 for the photocatalytic generation of hydrogen (H2) from water splitting. Upon irradiation (? ? 420 nm), the best-performing mixtures of Mo3S132-/MIL-125-NH2 and 1T-MoS2/MIL-125-NH2 exhibit high catalytic activity, producing H2 with evolution rates of 2094 and 1454 ?mol h-1 gMOF-1 and apparent quantum yields of 11.0 and 5.8% at 450 nm, respectively, which are among the highest values reported to date for visible-light-driven photocatalysis with MOFs. The high performance of Mo3S132- can be attributed to the good contact between these clusters and the MOF and the large number of catalytically active sites, while the high activity of 1T-MoS2 NPs is due to their high electrical conductivity leading to fast electron transfer processes. Recycling experiments revealed that although the Mo3S132-/MIL-125-NH2 slowly loses its activity, the 1T-MoS2/MIL-125-NH2 retains its activity for at least 72 h. This work indicates that earth-abundant compounds can be stable and highly catalytically active for photocatalytic water splitting, and should be considered as promising cocatalysts with new MOFs besides the traditional noble metal NPs.

SUBMITTER: Nguyen TN 

PROVIDER: S-EPMC6137427 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal-Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts.

Nguyen Tu N TN   Kampouri Stavroula S   Valizadeh Bardiya B   Luo Wen W   Ongari Daniele D   Planes Ophélie Marie OM   Züttel Andreas A   Smit Berend B   Stylianou Kyriakos C KC  

ACS applied materials & interfaces 20180827 36


We report the use of two earth abundant molybdenum sulfide-based cocatalysts, Mo<sub>3</sub>S<sub>13</sub><sup>2-</sup> clusters and 1T-MoS<sub>2</sub> nanoparticles (NPs), in combination with the visible-light active metal-organic framework (MOF) MIL-125-NH<sub>2</sub> for the photocatalytic generation of hydrogen (H<sub>2</sub>) from water splitting. Upon irradiation (λ ≥ 420 nm), the best-performing mixtures of Mo<sub>3</sub>S<sub>13</sub><sup>2-</sup>/MIL-125-NH<sub>2</sub> and 1T-MoS<sub>2<  ...[more]

Similar Datasets

| S-EPMC5908348 | biostudies-literature
| S-EPMC9268624 | biostudies-literature
| S-EPMC9864703 | biostudies-literature
| S-EPMC8159321 | biostudies-literature
| S-EPMC9583343 | biostudies-literature
| S-EPMC3952146 | biostudies-literature
| S-EPMC6509995 | biostudies-literature
| S-EPMC8951189 | biostudies-literature
| S-EPMC8978886 | biostudies-literature
| S-EPMC9064832 | biostudies-literature