Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways.
Ontology highlight
ABSTRACT: Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells-primarily eosinophils and mast cells-where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose-acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.
Project description:Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid-binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown.The histologic distribution, expression, and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation.Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by means of siglec blotting and isolation by means of siglec capture.Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, and connective tissue); both were significantly upregulated in patients with chronic rhinosinusitis. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B (MUC5B) under inflammatory control through the nuclear factor ?B pathway, and MUC5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue.Inflammation results in upregulation of immune-inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands are upregulated through the nuclear factor ?B pathway, resulting in their enhanced expression on MUC5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation.
Project description:Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Project description:RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues.
Project description:Keratan sulfate (KS) is a sulfated linear polymer of N-acetyllactosamine. Proteoglycans carrying keratan sulfate epitopes were majorly observed in cornea, cartilage and brain; and mainly involved in embryonic development, cornea transparency, and wound healing process. Recently, expression of KS in cancer has been shown to be highly associated with advanced tumor grade and poor prognosis. Therefore, we aimed to identify the expression of KS epitope in human pancreatic cancer primary and metastatic tumor lesions. Immunohistochemical analysis of KS expression was performed on primary pancreatic tumors and metastatic tissues. We observed an increased expression of KS epitope on primary tumor tissues compared to uninvolved normal and tumor stroma; and is associated with worse overall survival. Moreover, lung metastatic tumors show a higher-level expression of KS compared to primary tumors. Interestingly, KS biosynthesis specific glycosyltransferases expression was differentially regulated in metastatic pancreatic tumors. Taken together, these results indicate that aberrant expression of KS is predictive of pancreatic cancer progression and metastasis and may serve as a novel prognostic biomarker for pancreatic cancer.
Project description:A dense and diverse array of glycans on glycoproteins and glycolipids decorate all cell surfaces. In vertebrates, many of these carry sialic acid, in a variety of linkages and glycan contexts, as their outermost sugar moiety. Among their functions, glycans engage complementary glycan binding proteins (lectins) to regulate cell physiology. Among the glycan binding proteins are the Siglecs, sialic acid binding immunoglobulin-like lectins. In humans, there are 14 Siglecs, most of which are expressed on overlapping subsets of immune system cells. Each Siglec engages distinct, endogenous sialylated glycans that initiate signaling programs and regulate cellular responses. Here, we explore the emerging science of Siglec ligands, including endogenous sialoglycoproteins and glycolipids and synthetic sialomimetics. Knowledge in this field promises to reveal new molecular pathways controlling cell physiology and new opportunities for therapeutic intervention.
Project description:Keratan sulfate (KS) was isolated from chicken egg white in amounts corresponding to ?0.06 wt% (dry weight). This KS had a weight-average molecular weight of ?36-41 kDa with a polydispersity of ?1.3. The primary repeating unit present in chicken egg white KS was ?4) ?-N-acetyl-6-O-sulfo-d-glucosamine (1 ? 3) ?-d-galactose (1? with some 6-O-sulfo galactose residues present. This KS was somewhat resistant to depolymerization using keratanase 1 but could be depolymerized efficiently through the use of reactive oxygen species generated using copper (II) and hydrogen peroxide. Of particular interest was the presence of substantial amounts of 2,8- and 2,9-linked N-acetylneuraminic acid residues in the form of oligosialic acid terminating the non-reducing ends of the KS chains. Most of the KS appears to be N-linked to a protein core as evidenced by its sensitivity to PNGase F.
Project description:Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1-4) and glypicans (GPC1-6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.
Project description:Tauopathies are a class of neurodegenerative diseases, including Alzheimer’s disease, and are characterized by intraneuronal tau inclusion in the brain and the patient’s cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer’s patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Project description:The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs) have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.
Project description:PurposeCorneal stroma extracellular matrix (ECM) glycosaminoglycans (GAGs) include keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronic acid (HA). Embryonic corneal keratocytes and sensory nerve fibers grow and differentiate according to chemical cues they receive from the ECM. This study asked which of the proteins that may regulate keratocytes or corneal nerve growth cone immigration interact with corneal GAGs.MethodsBiotinylated KS (bKS), CSA (bCSA), and HA (bHA) were prepared and used in microarray protocols to assess their interactions with 8268 proteins and a custom microarray of 85 extracellular epitopes of nerve growth-related proteins. Surface plasmon resonance (SPR) was performed with bKS and SLIT2, and their ka, kd, and KD were determined.ResultsHighly sulfated KS interacted with 217 microarray proteins, including 75 kinases, several membrane or secreted proteins, many cytoskeletal proteins, and many nerve function proteins. CSA interacted with 24 proteins, including 10 kinases and 2 cell surface proteins. HA interacted with 6 proteins, including several ECM-related structural proteins. Of 85 ECM nerve-related epitopes, KS bound 40 proteins, including SLIT, 2 ROBOs, 9 EPHs, 8 Ephrins (EFNs), 8 semaphorins (SEMAs), and 2 nerve growth factor receptors. CSA bound nine proteins, including ROBO2, 2 EPHs, 1 EFN, two SEMAs, and netrin 4. HA bound no ECM nerve-related epitopes. SPR confirmed that KS binds SLIT2 strongly. The KS core protein mimecan/osteoglycin bound 15 proteins.ConclusionsCorneal stromal GAGs bind, and thus could alter the availability or conformation of, many proteins that may influence keratocyte and nerve growth cone behavior in the cornea.