Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses.
Ontology highlight
ABSTRACT: Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease-modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro.Aromatic carbamate derivatives were tested by establishing growth curves under pro-apoptotic conditions and activity evaluated by trypan blue and JC-1 staining, as well as a drop in pro-apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the CLN3 gene, and CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts. Ceramide levels were determined in CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts before and after treatment. Expression of BCL-2, ceramide synthesis enzymes (CERS2/CERS6/SMPD1/DEGS2) and Caspases 3/8/9 levels were compared in treated versus untreated CLN3-deficient PC12 cells by qRT-PCR.Retigabine, the benzyl-derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3-defective PC12 cells and rescued CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1-/CLN2-/CLN3-/CLN6-/CLN8 patient-derived lymphoblasts. Increased BCL-2 and decreased ceramide synthesis enzyme expression were established in CLN3-derived PC12 cells treated with the benzyl and allyl carbamate derivatives. They down-regulated Caspase 3/Caspase 8 expression. Caspase 9 expression was reduced by the benzyl-derivatized carbamate.These findings establish that compounds analogous to flupirtine demonstrate anti-apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases.
Annals of clinical and translational neurology 20180814 9
<h4>Objective</h4>Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease-modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro.<h4>Methods</h4>Aromatic carbamate derivatives were tested by establishing ...[more]
Project description:The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Project description:The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Project description:Background and purposeNeuronal ceroid lipofuscinoses are a group of neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigments in neuronal cells. As a result of storage material in the brain and retina, clinical manifestations include speech delay, cognitive dysfunction, motor regression, epilepsy, vision loss, and early death. At present, 14 different ceroid lipofuscinosis (CLN) genes are known. Recently, the FDA approved the use of recombinant human proenzyme of tripeptidyl-peptidase 1 for CLN2 disease, while phase I/IIa clinical trials for gene therapy in CLN3 and CLN6 are ongoing. Early diagnosis is, therefore, key to initiating treatment and arresting disease progression. Neuroimaging features of CLN1, CLN2, CLN3, and CLN5 diseases are well-described, with sparse literature on other subtypes. We aimed to investigate and expand the MR imaging features of genetically proved neuronal ceroid lipofuscinoses subtypes at our institution and also to report the time interval between the age of disease onset and the diagnosis of neuronal ceroid lipofuscinoses.Materials and methodsWe investigated and analyzed the age of disease onset and neuroimaging findings (signal intensity in periventricular, deep, and subcortical white matter, thalami, basal ganglia, posterior limb of the internal capsule, insular/subinsular regions, and ventral pons; and the presence or absence of supratentorial and/or infratentorial atrophy) of patients with genetically proved neuronal ceroid lipofuscinoses at our institution. This group consisted of 24 patients who underwent 40 brain MR imaging investigations between 1993 and 2019, with a male preponderance (male/female ratio = 15:9).ResultsThe mean ages of disease onset, first brain MR imaging, and diagnosis of neuronal ceroid lipofuscinoses were 4.70 ± 3.48 years, 6.76 ± 4.49 years, and 7.27 ± 4.78 years, respectively. Findings on initial brain MR imaging included T2/FLAIR hypointensity in the thalami (n = 22); T2/FLAIR hyperintensity in the periventricular and deep white matter (n = 22), posterior limb of the internal capsule (n = 22), ventral pons (n = 19), and insular/subinsular region (n = 18); supratentorial (n = 21) and infratentorial atrophy (n = 20). Eight of 9 patients who had follow-up neuroimaging showed progressive changes.ConclusionsWe identified reported classic neuroimaging features in all except 1 patient with neuronal ceroid lipofuscinoses in our study. CLN2, CLN5, and CLN7 diseases showed predominant cerebellar-over-cerebral atrophy. We demonstrate that abnormal signal intensity in the deep white matter, posterior limb of the internal capsule, and ventral pons is more common than previously reported in the literature. We report abnormal signal intensity in the insular/subinsular region for the first time. The difference in the median time from disease onset and diagnosis was 1.5 years.
Project description:The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative lysosomal storage disorders mainly affecting the brain and the retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses genes (CLN) have been identified. The clinical symptoms include seizures, progressive neurological decline, deterioration of motor and language skills, and dementia resulting in premature death. In addition, the deterioration and loss of vision caused by progressive retinal degeneration is another major hallmark of NCLs. To date, there is no curative therapy for the treatment of retinal degeneration and vision loss in patients with NCL. In this review, the key findings of different experimental approaches in NCL animal models aimed at attenuating progressive retinal degeneration and the decline in retinal function are discussed. Different approaches, including experimental enzyme replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy were evaluated and showed encouraging therapeutic benefits. Recent experimental ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies and transmembrane protein deficiencies have shown the strong potential of gene-based approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models. Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate retinal neurodegeneration, there is an unmet need for treatment options additionally targeting the retina in patients with NCL. The long-term benefits of these therapeutic interventions aimed at attenuating retinal degeneration and vision loss in patients with NCL remain to be investigated in future clinical studies.
Project description:The Neuronal Ceroid Lipofuscinoses (NCLs) are lysosomal storage diseases (LSDs) affecting the central nervous system (CNS), with generally recessive inheritance. They are characterized by pathological lipofuscin-like material accumulating in cells. The clinical phenotypes at all onset ages show progressive loss of vision, decreasing cognitive and motor skills, epileptic seizures and premature death, with dementia without visual loss prominent in the rarer adult forms. Eight causal genes, CLN10/CTSD, CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, CLN6, CLN7/MFSD8, CLN8, with more than 265 mutations and 38 polymorphisms (http://www.ucl.ac.uk/ncl) have been described. Other NCL genes are hypothesized, including CLN4 and CLN9; CLCN6, CLCN7 and possibly SGSH are under study. Some therapeutic strategies applied to other LSDs with significant systemic involvement would not be effective in NCLs due to the necessity of passing the blood brain barrier to prevent the neurodegeneration, repair or restore the CNS functionality. There are therapies for the NCLs currently at preclinical stages and under phase 1 trials to establish safety in affected children. These approaches involve enzyme replacement, gene therapy, neural stem cell replacement, immune therapy and other pharmacological approaches. In the next decade, progress in the understanding of the natural history and the biochemical and molecular cascade of events relevant to the pathogenesis of these diseases in humans and animal models will be required to achieve significant therapeutic advances.
Project description:The neuronal ceroid lipofuscinoses (NCL) are a group of 13 rare neurodegenerative disorders characterized by accumulation of cellular storage bodies. There are few therapeutic options, and existing tests do not monitor disease progression and treatment response. However, urine biomarkers could address this need. Proteomic analysis of CLN2 patient urine revealed activation of immune response pathways and pathways associated with the unfolded protein response. Analysis of CLN5 and CLN6 sheep model urine showed subtle changes. To confirm and investigate the relevance of candidate biomarkers a targeted LC-MS/MS proteomic assay was created. We applied this assay to additional CLN2 samples as well as other patients with NCL (CLN1, CLN3, CLN5, CLN6, and CLN7) and demonstrated that hexosaminidase-A, aspartate aminotransferase-1, and LAMP1 are increased in NCL samples and betaine-homocysteine S-methyltransferase-1 was specifically increased in patients with CLN2. These proteins could be used to monitor the effectiveness of future therapies aimed at treating systemic NCL disease.
Project description:The neuronal ceroid lipofuscinoses represent a group of disorders characterized by neurodegeneration and intracellular accumulation of an auto-fluorescent lipopigment (ceroid lipofuscin). Together, they represent the most prevalent class of childhood neurodegenerative disease. The neuronal ceroid lipofuscinoses encompass several distinct biological entities that vary in age of onset, specific neurologic phenotype, and rate of progression. In this review, we describe 9 major forms and present a classification scheme. Understanding the age of onset, clinical features, and natural history can inform rational diagnostics. Better knowledge of the natural histories of these disorders is necessary to shed light on the underlying pathobiology and to develop new therapeutics.
Project description:Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Project description:ObjectivesTo describe the clinical and neurophysiologic patterns of patients with neuronal ceroid lipofuscinoses associated with CLN6 mutations.MethodsWe reviewed the features of 11 patients with different ages at onset.ResultsClinical disease onset occurred within the first decade of life in 8 patients and in the second and third decades in 3. All children presented with progressive cognitive regression associated with ataxia and pyramidal and extrapyramidal signs. Recurrent seizures, visual loss, and myoclonus were mostly reported after a delay from onset; 7 children were chairbound and had severe dementia less than 4 years from onset. One child, with onset at 8 years, had a milder course. Three patients with a teenage/adult onset presented with a classic progressive myoclonic epilepsy phenotype that was preceded by learning disability in one. The EEG background was slow close to disease onset in 7 children, and later showed severe attenuation; a photoparoxysmal response (PPR) was present in all. The 3 teenage/adult patients had normal EEG background and an intense PPR. Early attenuation of the electroretinogram was seen only in children with onset younger than 5.5 years. Somatosensory evoked potentials were extremely enlarged in all patients.ConclusionsIn all patients, multifocal myoclonic jerks and seizures were a key feature, but myoclonic seizures were an early and prominent sign in the teenage/adult form only. Conversely, the childhood-onset form was characterized by initial and severe cognitive impairment coupled with electroretinogram and EEG attenuation. Cortical hyperexcitability, shown by the PPR and enlarged somatosensory evoked potentials, was a universal feature.
Project description:This article presents datasets associated with the research article entitled "Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease" (Murray et al., [1]). The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of fatal inherited diseases caused by mutations in a number of CLN genes that lead to degenerative and fatal encephalopathies in children. Naturally-occuring sheep models of NCL exist. Affected sheep share the clinical and pathological features of the human disease, including retinal degeneration. Electroretinography (ERG) was employed to characterise the physiological changes in the degenerating retina of CLN5 and CLN6 forms of ovine NCL. ERGs were performed every two months from 3 to 17 months of age in 11 NCL affected (6 CLN5-/ - and 5 CLN6-/- ) sheep and 12 clinically normal heterozygous controls (6 CLN5+/ - and 6 CLN6 +/-) under three different adaptation conditions. A-wave and b-wave amplitudes were collected from each eye using the Eickemeyer Veterinary ERG system. These are the first longitudinal datasets assessing the progression of retinal degeneration in ovine NCL, aiding in characterisation of the disease process and providing insight into optimal therapeutic windows for subsequent studies.