Unknown

Dataset Information

0

The Shape Effect on Polymer Nanoparticle Transport in a Blood Vessel.


ABSTRACT: Nanoparticle therapeutic delivery is influenced by many factors including physical, chemical, and biophysical properties along with local vascular conditions. In recent years, nanoparticles of various shapes have been fabricated and have shown significant impact on transport efficiency. Identification of which nanoparticle shape helps to improve the therapeutic delivery process allows for enhanced therapeutic effects, yet is hard to be quantified in vivo due to the complex nature of the in vivo environment. In this work, we turn to biological models as a guide for informing improved nanoparticle therapeutic delivery, and quantify the contribution of various factors on delivery efficiency. Here we show that with a mimetic blood vessel, improved therapeutic delivery is achieved using long filamentous rod nanoparticles under low pressure conditions. When considering medium pressure conditions, a combination of nanoparticle shapes presents improved therapeutic delivery over the treatment time-course starting with long filamentous rod nanoparticles, followed by short rod nanoparticles. Conditions of high pressure required a combination of short rod nanoparticles, followed by spherical nanoparticles to achieve enhanced therapeutic delivery. Overall, improvement of therapeutic delivery via nanoparticle carriers is likely to require a combination of nanoparticle shapes administered at different times over the treatment time-course, given patient specific conditions.

SUBMITTER: Uhl CG 

PROVIDER: S-EPMC6157743 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Shape Effect on Polymer Nanoparticle Transport in a Blood Vessel.

Uhl C G CG   Gao Y Y   Zhou S S   Liu Y Y  

RSC advances 20180220 15


Nanoparticle therapeutic delivery is influenced by many factors including physical, chemical, and biophysical properties along with local vascular conditions. In recent years, nanoparticles of various shapes have been fabricated and have shown significant impact on transport efficiency. Identification of which nanoparticle shape helps to improve the therapeutic delivery process allows for enhanced therapeutic effects, yet is hard to be quantified <i>in vivo</i> due to the complex nature of the <  ...[more]

Similar Datasets

| S-EPMC2867873 | biostudies-other
| S-EPMC3057021 | biostudies-literature
| S-EPMC6954233 | biostudies-literature
| S-EPMC8746361 | biostudies-literature
| S-EPMC11202582 | biostudies-literature
| S-EPMC5455977 | biostudies-literature
| S-EPMC7603353 | biostudies-literature
| S-EPMC8238234 | biostudies-literature
| S-EPMC6736679 | biostudies-literature
| S-EPMC4808411 | biostudies-literature