Unknown

Dataset Information

0

Evaluation of Active Brown Adipose Tissue by the Use of Hyperpolarized [1-13C]Pyruvate MRI in Mice.


ABSTRACT: The capacity to increase energy expenditure makes brown adipose tissue (BAT) a putative target for treatment of metabolic diseases such as obesity. Presently, investigation of BAT in vivo is mainly performed by fluoro-d-glucose positron emission tomography (FDG PET)/CT. However, non-radioactive methods that add information on, for example, substrate metabolism are warranted. Thus, the aim of this study was to evaluate the potential of hyperpolarized [1-13C]pyruvate Magnetic Resonance Imaging (HP-MRI) to determine BAT activity in mice following chronic cold exposure. Cold (6 °C) and thermo-neutral (30 °C) acclimated mice were scanned with HP-MRI for assessment of the interscapular BAT (iBAT) activity. Comparable mice were scanned with the conventional method FDG PET/MRI. Finally, iBAT was evaluated for gene expression and protein levels of the specific thermogenic marker, uncoupling protein 1 (UCP1). Cold exposure increased the thermogenic capacity 3?4 fold (p < 0.05) as measured by UCP1 gene and protein analysis. Furthermore, cold exposure as compared with thermo-neutrality increased iBAT pyruvate metabolism by 5.5-fold determined by HP-MRI which is in good agreement with the 5-fold increment in FDG uptake (p < 0.05) measured by FDG PET/MRI. iBAT activity is detectable in mice using HP-MRI in which potential changes in intracellular metabolism may add useful information to the conventional FDG PET studies. HP-MRI may also be a promising radiation-free tool for repetitive BAT studies in humans.

SUBMITTER: Riis-Vestergaard MJ 

PROVIDER: S-EPMC6164296 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of Active Brown Adipose Tissue by the Use of Hyperpolarized [1-<sup>13</sup>C]Pyruvate MRI in Mice.

Riis-Vestergaard Mette Ji MJ   Breining Peter P   Pedersen Steen Bønløkke SB   Laustsen Christoffer C   Stødkilde-Jørgensen Hans H   Borghammer Per P   Jessen Niels N   Richelsen Bjørn B  

International journal of molecular sciences 20180901 9


The capacity to increase energy expenditure makes brown adipose tissue (BAT) a putative target for treatment of metabolic diseases such as obesity. Presently, investigation of BAT in vivo is mainly performed by fluoro-d-glucose positron emission tomography (FDG PET)/CT. However, non-radioactive methods that add information on, for example, substrate metabolism are warranted. Thus, the aim of this study was to evaluate the potential of hyperpolarized [1-<sup>13</sup>C]pyruvate Magnetic Resonance  ...[more]

Similar Datasets

| S-EPMC4273360 | biostudies-literature
| S-EPMC6880930 | biostudies-literature
| S-EPMC6010986 | biostudies-literature
| S-EPMC8482109 | biostudies-literature