Unknown

Dataset Information

0

Bayes factors for choosing among six common survival models.


ABSTRACT: A super model that includes proportional hazards, proportional odds, accelerated failure time, accelerated hazards, and extended hazards models, as well as the model proposed in Diao et al. (Biometrics 69(4):840-849, 2013) accounting for crossed survival as special cases is proposed for the purpose of testing and choosing among these popular semiparametric models. Efficient methods for fitting and computing fast, approximate Bayes factors are developed using a nonparametric baseline survival function based on a transformed Bernstein polynomial. All manner of censoring is accommodated including right, left, and interval censoring, as well as data that are observed exactly and mixtures of all of these; current status data are included as a special case. The method is tested on simulated data and two real data examples. The approach is easily carried out via a new function in the spBayesSurv R package.

SUBMITTER: Zhang J 

PROVIDER: S-EPMC6165714 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayes factors for choosing among six common survival models.

Zhang Jiajia J   Hanson Timothy T   Zhou Haiming H  

Lifetime data analysis 20180330 2


A super model that includes proportional hazards, proportional odds, accelerated failure time, accelerated hazards, and extended hazards models, as well as the model proposed in Diao et al. (Biometrics 69(4):840-849, 2013) accounting for crossed survival as special cases is proposed for the purpose of testing and choosing among these popular semiparametric models. Efficient methods for fitting and computing fast, approximate Bayes factors are developed using a nonparametric baseline survival fun  ...[more]

Similar Datasets

| S-EPMC6820449 | biostudies-literature
| S-EPMC9440840 | biostudies-literature
| S-EPMC2987358 | biostudies-literature
| S-EPMC4870158 | biostudies-literature
| S-EPMC5654754 | biostudies-literature
| S-EPMC3002242 | biostudies-literature
| S-EPMC4465815 | biostudies-literature
| S-EPMC7138131 | biostudies-literature
| S-EPMC5467734 | biostudies-literature
| S-EPMC4771718 | biostudies-literature