A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate ?-arrestin-biased signaling.
Ontology highlight
ABSTRACT: The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11 and Gi/o to stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function CASR mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+i responses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680G in HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+i responses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11 and Gi/o and was mediated instead by a noncanonical pathway involving ?-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced ?-arrestin signaling by disrupting a salt bridge formed between Arg680 and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through ?-arrestin and the importance of the Arg680-Glu767 salt bridge in mediating signaling bias.
SUBMITTER: Gorvin CM
PROVIDER: S-EPMC6166785 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA