Unknown

Dataset Information

0

Nitrogen Dynamics in Soil Fertilized with Slow Release Brown Coal-Urea Fertilizers.


ABSTRACT: Reducing the release rate of urea can increase its use efficiency and minimize negative effects on the environment. A novel fertilizer material that was formed by blending brown coal (BC) with urea, delayed fertilizer N release in controlled climatic conditions in a glasshouse, through strong retention facilitated by the extensive surface area, porous structure and chemical functional groups in the BC. However, the role of BC as a carrier of synthetic urea and the effect of their interaction with various soil types on the dynamics and mineralization of N remains largely unclear. Therefore, a soil column incubation study was conducted to assess the release, transformation and transportation of N from several different brown coal-urea (BCU) granules, compared to commercial urea. Blending and subsequent granulation of urea with BC substantially increased fertilizer N retention in soil by decreasing gaseous emissions and leaching of N compared to urea alone, irrespective of soil type. The BCU granule containing the highest proportion of BC had lower leaching and gaseous emissions and maintained considerably higher mineral and mineralizable N in topsoil. Possible modes of action of the BCU granules have been proposed, emphasizing the role of BC in enhancing N retention over a longer period of time. The results support the notion that BCU granules can be used as a slow release and enhanced efficiency fertilizer for increasing availability and use efficiency of N by crops.

SUBMITTER: Saha BK 

PROVIDER: S-EPMC6167360 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nitrogen Dynamics in Soil Fertilized with Slow Release Brown Coal-Urea Fertilizers.

Saha Biplob K BK   Rose Michael T MT   Wong Vanessa N L VNL   Cavagnaro Timothy R TR   Patti Antonio F AF  

Scientific reports 20181001 1


Reducing the release rate of urea can increase its use efficiency and minimize negative effects on the environment. A novel fertilizer material that was formed by blending brown coal (BC) with urea, delayed fertilizer N release in controlled climatic conditions in a glasshouse, through strong retention facilitated by the extensive surface area, porous structure and chemical functional groups in the BC. However, the role of BC as a carrier of synthetic urea and the effect of their interaction wit  ...[more]

Similar Datasets

| S-EPMC11217492 | biostudies-literature
| S-EPMC9610826 | biostudies-literature
| S-EPMC7299380 | biostudies-literature
| S-EPMC7254511 | biostudies-literature
| S-EPMC8674906 | biostudies-literature
| S-EPMC10233127 | biostudies-literature
| S-EPMC9602616 | biostudies-literature
| S-EPMC7555488 | biostudies-literature
| S-EPMC7880434 | biostudies-literature
| S-EPMC9319167 | biostudies-literature