Ontology highlight
ABSTRACT: Background
Modern CT scanners provide automatic dose adjustment systems, which are promising options for reducing radiation dose in pediatric CT scans. Their impact on patient dose, however, has not been investigated sufficiently thus far.Objective
To evaluate automated tube voltage selection (ATVS) in combination with automated tube current modulation (ATCM) in non-contrast pediatric chest CT, with regard to the diagnostic image quality.Materials and methods
There were 160 non-contrast pediatric chest CT scans (8.7±5.4 years) analyzed retrospectively without and with ATVS. Correlations of volume CT Dose Index (CTDIvol) and effective diameter, with and without ATVS, were compared using Fisher's z-transformation. Image quality was assessed by mean signal-difference-to-noise ratios (SDNR) in the aorta and in the left main bronchus using the independent samples t-test. Two pediatric radiologists and a general radiologist rated overall subjective Image quality. Readers' agreement was assessed using weighted kappa coefficients. A p value <0.05 was considered significant.Results
CTDIvol correlation with the effective diameter was r = 0.62 without and r = 0.80 with ATVS (CI: -0.04 to -0.60; p = 0.025). Mean SDNR was 10.88 without and 10.03 with ATVS (p = 0.0089). Readers' agreement improved with ATVS (weighted kappa between pediatric radiologists from 0.1 (0.03-0.16) to 0.27 (0.09-0.45) with ATVS; between general and each pediatric radiologist from 0.1 (0.06-0.14) to 0.12 (0.05-0.20), and from 0.22 (0.11-0.34) to 0.36 (0.24-0.49)).Conclusion
ATVS, combined with ATCM, results in a radiation dose reduction for pediatric non-contrast chest CT without a loss of diagnostic image quality and prevents errors in manual tube voltage setting, and thus protecting larger children against an unnecessarily high radiation exposure.
SUBMITTER: Hojreh A
PROVIDER: S-EPMC6169939 | biostudies-literature |
REPOSITORIES: biostudies-literature