Unknown

Dataset Information

0

Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor.


ABSTRACT: The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1-22R, which does not contain Trp27, used a non-native Arg23 residue to form cation-? and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.

SUBMITTER: Wong LLL 

PROVIDER: S-EPMC6187618 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor.

Wong Lilian L L LLL   Scott Daniel James DJ   Hossain Mohammed Akhter MA   Kaas Quentin Q   Rosengren K Johan KJ   Bathgate Ross A D RAD  

The Journal of biological chemistry 20180821 41


The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3  ...[more]

Similar Datasets

| S-EPMC6187623 | biostudies-literature
| S-EPMC4243858 | biostudies-literature
| S-EPMC5468247 | biostudies-literature
| S-EPMC3579193 | biostudies-literature
| S-EPMC5468325 | biostudies-literature
| S-EPMC4538381 | biostudies-literature
| S-EPMC3870696 | biostudies-literature
| S-EPMC7608467 | biostudies-literature
| S-EPMC1783990 | biostudies-literature
| S-EPMC3487622 | biostudies-literature