Unknown

Dataset Information

0

Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.


ABSTRACT: Dynamic treatment regimens (DTRs) are sequential treatment decisions tailored by patient's evolving features and intermediate outcomes at each treatment stage. Patient heterogeneity and the complexity and chronicity of many diseases call for learning optimal DTRs that can best tailor treatment according to each individual's time-varying characteristics (eg, intermediate response over time). In this paper, we propose a robust and efficient approach referred to as Augmented Outcome-weighted Learning (AOL) to identify optimal DTRs from sequential multiple assignment randomized trials. We improve previously proposed outcome-weighted learning to allow for negative weights. Furthermore, to reduce the variability of weights for numeric stability and improve estimation accuracy, in AOL, we propose a robust augmentation to the weights by making use of predicted pseudooutcomes from regression models for Q-functions. We show that AOL still yields Fisher-consistent DTRs even if the regression models are misspecified and that an appropriate choice of the augmentation guarantees smaller stochastic errors in value function estimation for AOL than the previous outcome-weighted learning. Finally, we establish the convergence rates for AOL. The comparative advantage of AOL over existing methods is demonstrated through extensive simulation studies and an application to a sequential multiple assignment randomized trial for major depressive disorder.

SUBMITTER: Liu Y 

PROVIDER: S-EPMC6191367 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.

Liu Ying Y   Wang Yuanjia Y   Kosorok Michael R MR   Zhao Yingqi Y   Zeng Donglin D  

Statistics in medicine 20180605 26


Dynamic treatment regimens (DTRs) are sequential treatment decisions tailored by patient's evolving features and intermediate outcomes at each treatment stage. Patient heterogeneity and the complexity and chronicity of many diseases call for learning optimal DTRs that can best tailor treatment according to each individual's time-varying characteristics (eg, intermediate response over time). In this paper, we propose a robust and efficient approach referred to as Augmented Outcome-weighted Learni  ...[more]

Similar Datasets

| S-EPMC5378692 | biostudies-literature
| S-EPMC6457899 | biostudies-literature
| S-EPMC4517946 | biostudies-literature
| S-EPMC7731977 | biostudies-literature
| S-EPMC4300556 | biostudies-literature
| S-EPMC10035569 | biostudies-literature
| S-EPMC5607057 | biostudies-literature
| S-EPMC4988949 | biostudies-literature
| S-EPMC9826186 | biostudies-literature
| S-EPMC5774868 | biostudies-literature