Unknown

Dataset Information

0

Iron Oxide Nanowire-Based Filter for Inactivation of Airborne Bacteria.


ABSTRACT: Heating, ventilation, and air conditioning (HVAC) systems are among the most common methods to improve indoor air quality. However, after long-term operation, the HVAC filter can result in a proliferation of bacteria, which may release into the filtered air subsequently. This issue can be addressed by designing antibacterial filters. In this study, we report an iron oxide nanowires-based filter fabricated from commercially available iron mesh through a thermal treatment. At optimal conditions, the filter demonstrated a log inactivation efficiency of > 7 within 10 seconds towards S. epidermidis (Gram-positive), a common bacterial species of indoor bioaerosol. 52 % of bioaerosol cells can be captured by a single filter, which can be further improved to 98.7 % by connecting five filters in-tandem. The capture and inactivation capacity of the reported filter did not degrade over long-term use. The inactivation of bacteria is attributed to the synergic effects of the hydroxyl radicals, electroporation, and Joule heating, which disrupted the cell wall and nucleoid of S. epidermidis, as verified by the model simulations, fluorescence microscopy, electron microscopy, and infrared spectroscopy. The relative humidity plays an important role in the inactivation process. The filter also exhibited a satisfactory inactivation efficiency towards E. coli (Gram-negative). The robust synthesis, low cost, and satisfactory inactivation performance towards both Gram-positive and Gram-negative bacteria make the filter demonstrated here suitable to be assembled into HVAC filters as an antibacterial layer for efficient control of indoor bioaerosols.

SUBMITTER: Wang D 

PROVIDER: S-EPMC6193566 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Iron Oxide Nanowire-Based Filter for Inactivation of Airborne Bacteria.

Wang Dawei D   Zhu Bin B   He Xiang X   Zhu Zan Z   Hutchins Grant G   Xu Ping P   Wang Wei-Ning WN  

Environmental science. Nano 20180404


Heating, ventilation, and air conditioning (HVAC) systems are among the most common methods to improve indoor air quality. However, after long-term operation, the HVAC filter can result in a proliferation of bacteria, which may release into the filtered air subsequently. This issue can be addressed by designing antibacterial filters. In this study, we report an iron oxide nanowires-based filter fabricated from commercially available iron mesh through a thermal treatment. At optimal conditions, t  ...[more]

Similar Datasets

| S-EPMC3176509 | biostudies-literature
| S-EPMC6815955 | biostudies-literature
| PRJNA529026 | ENA
| PRJNA932577 | ENA
| S-EPMC9755232 | biostudies-literature
| S-EPMC5551245 | biostudies-literature
| S-EPMC7112078 | biostudies-literature
| S-EPMC3993907 | biostudies-other
| S-EPMC5293192 | biostudies-literature
| S-EPMC5872938 | biostudies-literature