Unknown

Dataset Information

0

Inactivation of airborne bacteria using different UV sources: Performance modeling, energy utilization, and endotoxin degradation.


ABSTRACT: Airborne bacteria-containing bioaerosols have attracted increased research attention on account of their adverse effects on human health. Ultraviolet germicidal irradiation (UVGI) is an effective method to inactivate airborne microorganisms. The present study models and compares the inactivation performance of three UV sources in the UVGI for aerosolized Escherichia coli. Inactivation efficiency of 0.5, 2.2 and 3.1 logarithmic order was obtained at an exposure UV dose of 370?J/m3 under UVA (365?nm), UVC (254?nm) and UVD (185?nm) sources, respectively. A Beer-Lambert law-based model was developed and validated to compare the inactivation performances of the UV sources, and modeling enabled prediction of inactivation efficiency and analysis of the sensitivity of several parameters. Low influent E. coli concentrations and high UV doses resulted in high energy consumption (EC). The change in airborne endotoxin concentration during UV inactivation was analyzed, and UVC and UVA irradiation showed no marked effect on endotoxin degradation. By contrast, both free and bound endotoxins could be removed by UVD treatment, which is attributed to the ozone generated by the UVD source. The results of this study can provide a better understanding of the air disinfection and airborne endotoxin removal processes.

SUBMITTER: Wang C 

PROVIDER: S-EPMC7112078 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inactivation of airborne bacteria using different UV sources: Performance modeling, energy utilization, and endotoxin degradation.

Wang Can C   Lu Siyi S   Zhang Zhiwei Z  

The Science of the total environment 20181120


Airborne bacteria-containing bioaerosols have attracted increased research attention on account of their adverse effects on human health. Ultraviolet germicidal irradiation (UVGI) is an effective method to inactivate airborne microorganisms. The present study models and compares the inactivation performance of three UV sources in the UVGI for aerosolized Escherichia coli. Inactivation efficiency of 0.5, 2.2 and 3.1 logarithmic order was obtained at an exposure UV dose of 370 J/m<sup>3</sup> unde  ...[more]

Similar Datasets

| S-EPMC6193566 | biostudies-literature
| S-EPMC8994679 | biostudies-literature
| S-EPMC7679659 | biostudies-literature
| S-EPMC9244375 | biostudies-literature
| S-EPMC11350808 | biostudies-literature
| PRJNA932577 | ENA
| PRJNA529026 | ENA
| S-EPMC3993907 | biostudies-other
| S-EPMC7094417 | biostudies-literature
| S-EPMC5293192 | biostudies-literature