Project description:ObjectiveTo investigate the relationship between the topography of amyloid-β plaques, tau neurofibrillary tangles, and the overlap between the two, with cognitive dysfunction in individuals without dementia.MethodsWe evaluated 154 individuals who were assessed with amyloid-β PET with [18 F]AZD4694, tau-PET with [18 F]MK6240, structural MRI, and neuropsychological testing. We also evaluated an independent cohort of 240 individuals who were assessed with amyloid-β PET with [18 F]Florbetapir, tau-PET with [18 F]Flortaucipir, structural MRI, and neuropsychological testing. Using the VoxelStats toolbox, we conducted voxel-wise linear regressions between amyloid-PET, tau-PET, and their interaction with cognitive function, correcting for age, sex, and years of education.ResultsIn both cohorts, we observed that tau-PET standardized uptake value ratio in medial temporal lobes was associated with clinical dementia rating Sum of Boxes (CDR-SoB) scores independently of local amyloid-PET uptake (FWE corrected at p < 0.001). We also observed in both cohorts that in regions of the neocortex, associations between neocortical tau-PET and clinical function were dependent on local amyloid-PET (FWE corrected at p < 0.001).InterpretationIn medial temporal brain regions, characterized by the accumulation of tau pathology in the absence of amyloid-β, tau had direct associations with cognitive dysfunction. In brain regions characterized by the accumulation of both amyloid-β and tau pathologies such as the posterior cingulate and medial frontal cortices, tau's relationship with cognitive dysfunction was dependent on local amyloid-β concentrations. Our results provide evidence that amyloid-β in Alzheimer's disease influences cognition by potentiating the deleterious effects of tau pathology.
Project description:BackgroundCerebrospinal fluid (CSF) biomarkers Aβ1-42, t-tau and p-tau have a characteristic pattern in Alzheimer's Disease (AD). Their roles in HIV-associated neurocognitive disorder (HAND) remains unclear.MethodsAdults with chronic treated HIV disease were recruited (n = 43, aged 56.7 ± 7.9; 32% aged 60+; median HIV duration 20 years, >95% plasma and CSF HIV RNA <50 cp/mL, on cART for a median 24 months). All underwent standard neuropsychological testing (61% had HAND), APOE genotyping (30.9% carried APOE ε4 and 7.1% were ε4 homozygotes) and a lumbar puncture. Concentrations of Aβ1-42, t-tau and p-tau were assessed in the CSF using commercial ELISAs. Current neurocognitive status was defined using the continuous Global Deficit Score, which grades impairment in clinically relevant categories. History of HAND was recorded. Univariate correlations informed multivariate models, which were corrected for nadir CD4-T cell counts and HIV duration.ResultsCarriage of APOE ε4 predicted markedly lower levels of CSF Aβ1-42 in univariate (r = -.50; p = .001) and multivariate analyses (R(2) = .25; p < .0003). Greater levels of neurocognitive impairment were associated with higher CSF levels of p-tau in univariate analyses (r = .32; p = .03) and multivariate analyses (R(2) = .10; p = .03). AD risk prediction cut-offs incorporating all three CSF biomarkers suggested that 12.5% of participants had a high risk for AD. Having a CSF-AD like profile was more frequent in those with current (p = .05) and past HIV-associated dementia (p = .03).ConclusionsSimilarly to larger studies, APOE ε4 genotype was not directly associated with HAND, but moderated CSF levels of Aβ1-42 in a minority of participants. In the majority of participants, increased CSF p-tau levels were associated with current neurocognitive impairment. Combined CSF biomarker risk for AD in the current HIV+ sample is more than 10 times greater than in the Australian population of the same age. Larger prospective studies are warranted.
Project description:Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.
Project description:Frontotemporal lobar degeneration, the neuropathological substrate of frontotemporal dementia (FTD), is characterized by the deposition of protein aggregates, including tau. Evidence has shown concomitant amyloid pathology in some of these patients, which seems to contribute to a more aggressive disease. Our aim was to evaluate cerebrospinal fluid (CSF) amyloid-beta as a predictor of the mortality of FTD patients. We included 99 patients diagnosed with FTD-both behavioral and language variants-with no associated motor neuron disease, from whom a CSF sample was collected. These patients were followed prospectively in our center, and demographic and clinical data were obtained. The survival analysis was carried through a Cox regression model. Patients who died during follow up had a significantly lower CSF amyloid-beta1-42 than those who did not. The survival analysis demonstrated that an increased death rate was associated with a lower CSF amyloid-beta1-42 (HR = 0.999, 95% CI = [0.997, 1.000], p = 0.049). Neither demographic nor clinical variables, nor CSF total tau or p-tau were significantly associated with this endpoint. These results suggest that amyloid deposition in FTD patients may be associated with a higher mortality.
Project description:Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.
Project description:Research shows that gamma activity changes in Alzheimer's disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30-50 Hz) and high gamma (50-80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen's d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen's d = -0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen's d = -1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen's d = -0.51∼-1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = -0.70∼-0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.
Project description:We examined the characteristics of individuals with biomarker evidence of tauopathy but without β-amyloid (Aβ) (A-T+) in relation to individuals with (A+T+) and without (A-T-) evidence of Alzheimer's disease (AD). We included 561 participants with Aβ and tau PET from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We compared A-T- (n = 316), A-T+ (n = 63), and A+T+ (n = 182) individuals on demographics, amyloid, tau, hippocampal volumes, and cognition. A-T+ individuals were low on apolipoprotein E ɛ4 prevalence (17%) and had no evidence of subtly elevated brain Aβ within the negative range. The severity of tau deposition, hippocampal atrophy, and cognitive dysfunction in the A-T+ group was intermediate between A-T- and A+T+ (all p < 0.001). Tau uptake patterns in A-T+ individuals were heterogeneous, but approximately 29% showed tau deposition in the medial temporal lobe only, consistent with primary age-related tauopathy and an additional 32% showed a pattern consistent with AD. A-T+ individuals also share other features that are characteristic of AD such as cognitive impairment and neurodegeneration, but this group is heterogeneous and likely reflects more than one disorder.
Project description:ObjectiveCognitive decline associated with Parkinson disease (PD) is common and highly disabling. Biomarkers that help identify patients at risk for cognitive decline would be useful additions to the clinical management of the disease.MethodsA total of 45 patients with PD were enrolled in this prospective cohort study and had at least 1 yearly longitudinal follow-up evaluation. CSF was collected at baseline and cognition was assessed at baseline and follow-up visits using the Mattis Dementia Rating Scale (DRS-2). CSF was tested for amyloid β 1-42 (Aβ(1-42)), p-tau(181p), and total tau levels using the Luminex xMAP platform. Mixed linear models were used to test for associations between baseline CSF biomarker levels and change in cognition over time.ResultsLower baseline CSF Aβ(1-42) was associated with more rapid cognitive decline. Subjects with CSF Aβ(1-42) levels ≤192 pg/mL declined an average of 5.85 (95% confidence interval 2.11-9.58, p = 0.002) points per year more rapidly on the DRS-2 than subjects above that cutoff, after adjustment for age, disease duration, and baseline cognitive status. CSF total tau and p-tau(181p) levels were not significantly associated with cognitive decline.ConclusionsReduced CSF Aβ(1-42) was an independent predictor of cognitive decline in patients with PD. This observation is consistent with previous research showing that Alzheimer disease pathology contributes to cognitive impairment in PD. This biomarker may provide clinically useful prognostic information, particularly if combined with other risk factors for cognitive impairment in PD.
Project description:The use of cerebrospinal fluid levels of Aβ42 and pTau181 as endophenotypes for genetic studies of Alzheimer's disease (AD) has led to successful identification of both rare and common AD risk variants. In addition, this approach has provided meaningful hypotheses for the biological mechanisms by which known AD risk variants modulate the disease process. In this article we discuss these successes and outline challenges to effective and continued applications of this approach. We contrast the statistical power of this approach with traditional case-control designs and discuss solutions to address challenges in quality control and data analysis for these phenotypes. Finally, we discuss the potential for the use of this approach with larger samples as well as the incorporation of next generation sequencing and for future work with other endophenotypes for AD.