Druggability of Coronary Artery Disease Risk Loci.
Ontology highlight
ABSTRACT: BACKGROUND:Genome-wide association studies have identified multiple loci associated with coronary artery disease and myocardial infarction, but only a few of these loci are current targets for on-market medications. To identify drugs suitable for repurposing and their targets, we created 2 unique pipelines integrating public data on 49 coronary artery disease/myocardial infarction-genome-wide association studies loci, drug-gene interactions, side effects, and chemical interactions. METHODS:We first used publicly available genome-wide association studies results on all phenotypes to predict relevant side effects, identified drug-gene interactions, and prioritized candidates for repurposing among existing drugs. Second, we prioritized gene product targets by calculating a druggability score to estimate how accessible pockets of coronary artery disease/myocardial infarction-associated gene products are, then used again the genome-wide association studies results to predict side effects, excluded loci with widespread cross-tissue expression to avoid housekeeping and genes involved in vital processes and accordingly ranked the remaining gene products. RESULTS:These pipelines ultimately led to 3 suggestions for drug repurposing: pentolinium, adenosine triphosphate, and riociguat (to target CHRNB4, ACSS2, and GUCY1A3, respectively); and 3 proteins for drug development: LMOD1 (leiomodin 1), HIP1 (huntingtin-interacting protein 1), and PPP2R3A (protein phosphatase 2, regulatory subunit b-double prime, ?). Most current therapies for coronary artery disease/myocardial infarction treatment were also rediscovered. CONCLUSIONS:Integration of genomic and pharmacological data may prove beneficial for drug repurposing and development, as evidence from our pipelines suggests.
SUBMITTER: Tragante V
PROVIDER: S-EPMC6205215 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA