Unknown

Dataset Information

0

Universal intracellular biomolecule delivery with precise dosage control.


ABSTRACT: Intracellular delivery of mRNA, DNA, and other large macromolecules into cells plays an essential role in an array of biological research and clinical therapies. However, current methods yield a wide variation in the amount of material delivered, as well as limitations on the cell types and cargoes possible. Here, we demonstrate quantitatively controlled delivery into a range of primary cells and cell lines with a tight dosage distribution using a nanostraw-electroporation system (NES). In NES, cells are cultured onto track-etched membranes with protruding nanostraws that connect to the fluidic environment beneath the membrane. The tight cell-nanostraw interface focuses applied electric fields to the cell membrane, enabling low-voltage and nondamaging local poration of the cell membrane. Concurrently, the field electrophoretically injects biomolecular cargoes through the nanostraws and into the cell at the same location. We show that the amount of material delivered is precisely controlled by the applied voltage, delivery duration, and reagent concentration. NES is highly effective even for primary cell types or different cell densities, is largely cargo agnostic, and can simultaneously deliver specific ratios of different molecules. Using a simple cell culture well format, the NES delivers into >100,000 cells within 20 s with >95% cell viability, enabling facile, dosage-controlled intracellular delivery for a wide variety of biological applications.

SUBMITTER: Cao Y 

PROVIDER: S-EPMC6209385 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Universal intracellular biomolecule delivery with precise dosage control.

Cao Y Y   Cao Y Y   Chen H H   Qiu R R   Hanna M M   Ma E E   Hjort M M   Zhang A A   Lewis R S RS   Wu J C JC   Melosh N A NA  

Science advances 20181031 10


Intracellular delivery of mRNA, DNA, and other large macromolecules into cells plays an essential role in an array of biological research and clinical therapies. However, current methods yield a wide variation in the amount of material delivered, as well as limitations on the cell types and cargoes possible. Here, we demonstrate quantitatively controlled delivery into a range of primary cells and cell lines with a tight dosage distribution using a nanostraw-electroporation system (NES). In NES,  ...[more]

Similar Datasets

| S-EPMC8157519 | biostudies-literature
| S-EPMC8728830 | biostudies-literature
| S-EPMC4319691 | biostudies-literature
| S-EPMC9667466 | biostudies-literature
| S-EPMC8787424 | biostudies-literature
| S-EPMC10181932 | biostudies-literature
| S-EPMC10987104 | biostudies-literature
| S-EPMC6925986 | biostudies-literature
| S-EPMC8102429 | biostudies-literature