Unknown

Dataset Information

0

CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD+ Pools.


ABSTRACT: Tumor cells require increased rates of cell metabolism to generate the macromolecules necessary to sustain proliferation. They rely heavily on NAD+ as a cofactor for multiple metabolic enzymes in anabolic and catabolic reactions. NAD+ also serves as a substrate for PARPs, sirtuins, and cyclic ADP-ribose synthases. Dysregulation of the cyclic ADP-ribose synthase CD38, the main NAD'ase in cells, is reported in multiple cancer types. This study demonstrates a novel connection between CD38, modulation of NAD+, and tumor cell metabolism in prostate cancer. CD38 expression inversely correlates with prostate cancer progression. Expressing CD38 in prostate cancer cells lowered intracellular NAD+, resulting in cell-cycle arrest and expression of p21Cip1 (CDKNA1). In parallel, CD38 diminishes glycolytic and mitochondrial metabolism, activates AMP-activated protein kinase (AMPK), and inhibits fatty acid and lipid synthesis. Pharmacologic inhibition of nicotinamide phosphoribosyltransferase (NAMPT) mimicked the metabolic consequences of CD38 expression, demonstrating similarity between CD38 expression and NAMPT inhibition. Modulation of NAD+ by CD38 also induces significant differential expression of the transcriptome, producing a gene expression signature indicative of a nonproliferative phenotype. Altogether, in the context of prostate cancer, the data establish a novel role for the CD38-NAD+ axis in the regulation of cell metabolism and development.Implications: This research establishes a mechanistic connection between CD38 and metabolic control. It also provides the foundation for the translation of agents that modulate NAD+ levels in cancer cells as therapeutics. Mol Cancer Res; 16(11); 1687-700. ©2018 AACR.

SUBMITTER: Chmielewski JP 

PROVIDER: S-EPMC6214722 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD<sup>+</sup> Pools.

Chmielewski Jeffrey P JP   Bowlby Sarah C SC   Wheeler Frances B FB   Shi Lihong L   Sui Guangchao G   Davis Amanda L AL   Howard Timothy D TD   D'Agostino Ralph B RB   Miller Lance D LD   Sirintrapun S Joseph SJ   Cramer Scott D SD   Kridel Steven J SJ  

Molecular cancer research : MCR 20180803 11


Tumor cells require increased rates of cell metabolism to generate the macromolecules necessary to sustain proliferation. They rely heavily on NAD<sup>+</sup> as a cofactor for multiple metabolic enzymes in anabolic and catabolic reactions. NAD<sup>+</sup> also serves as a substrate for PARPs, sirtuins, and cyclic ADP-ribose synthases. Dysregulation of the cyclic ADP-ribose synthase CD38, the main NAD'ase in cells, is reported in multiple cancer types. This study demonstrates a novel connection  ...[more]

Similar Datasets

| S-EPMC10562803 | biostudies-literature
| S-EPMC7770554 | biostudies-literature
| S-EPMC7963035 | biostudies-literature
| S-EPMC3609577 | biostudies-literature
| S-EPMC5837048 | biostudies-literature
| S-EPMC6150989 | biostudies-literature
| S-EPMC3404953 | biostudies-literature
| S-EPMC11223747 | biostudies-literature
| S-EPMC7888175 | biostudies-literature
| S-EPMC7409778 | biostudies-literature