Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study.
Ontology highlight
ABSTRACT: Higher polygenic risk score for schizophrenia (szPGRS) has been associated with lower cognitive function and might be a predictor of decline in brain structure in apparently healthy populations. Age-related declines in structural brain connectivity-measured using white matter diffusion MRI -are evident from cross-sectional data. Yet, it remains unclear how graph theoretical metrics of the structural connectome change over time, and whether szPGRS is associated with differences in ageing-related changes in human brain connectivity. Here, we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period of 3 years (age???73 years, N?=?731; age ?76 years, N?=?488). From their brain scans we derived tract-averaged fractional anisotropy (FA) and mean diffusivity (MD), and network topology properties. We investigated the cross-sectional and longitudinal associations between these structural brain variables and szPGRS. Higher szPGRS showed significant associations with longitudinal increases in MD in the splenium (??=?0.132, pFDR?=?0.040), arcuate (??=?0.291, pFDR?=?0.040), anterior thalamic radiations (??=?0.215, pFDR?=?0.040) and cingulum (??=?0.165, pFDR?=?0.040). Significant declines over time were observed in graph theory metrics for FA-weighted networks, such as mean edge weight (??=?-0.039, pFDR?=?0.048) and strength (??=?-0.027, pFDR?=?0.048). No significant associations were found between szPGRS and graph theory metrics. These results are consistent with the hypothesis that szPGRS confers risk for ageing-related degradation of some aspects of structural connectivity.
SUBMITTER: Alloza C
PROVIDER: S-EPMC6215331 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA