Encapsulation and Delivery of Neutrophic Proteins and Hydrophobic Agents Using PMOXA-PDMS-PMOXA Triblock Polymersomes.
Ontology highlight
ABSTRACT: Polymersomes are attractive nanocarriers for hydrophilic and lipophilic drugs; they are more stable than liposomes, tunable, and relatively easy to prepare. The copolymer composition and molar mass are critical features that determine the physicochemical properties of the polymersomes including the rate of drug release. We used the triblock-copolymer, poly(2-methyl-2-oxazoline)-block-poly-(dimethysiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-PDMS-PMOXA), to form amphipathic polymersomes capable of loading proteins and small hydrophobic agents. The selected agents were unstable neurotrophins (nerve growth factor and brain-derived neurotrophic factor), a large protein CD109, and the fluorescent drug curcumin. We prepared, characterized, and tested polymersomes loaded with selected agents in 2D and 3D biological models. Curcumin-loaded and rhodamine-bound PMOXA-PDMS-PMOXA polymersomes were used to visualize them inside cells. N-Methyl-d-aspartate receptor (NMDAR) agonists and antagonists were also covalently attached to the surface of polymersomes for targeting neurons. Labeled and unlabeled polymersomes with or without loaded agents were characterized using dynamic light scattering (DLS), UV-vis fluorescence spectroscopy, and asymmetrical flow field-flow fractionation (AF4). Polymersomes were imaged and tested for biological activity in human and murine fibroblasts, murine macrophages, primary murine dorsal root ganglia, and murine hippocampal cultures. Polymersomes were rapidly internalized and there was a clear intracellular co-localization of the fluorescent drug (curcumin) with the fluorescent rhodamine-labeled polymersomes. Polymersomes containing CD109, a glycosylphosphatidylinositol-anchored protein, promoted cell migration in the model of wound healing. Nerve growth factor-loaded polymersomes effectively enhanced neurite outgrowth in dissociated and explanted dorsal root ganglia. Brain-derived neurotrophic factor increased dendritic spine density in serum-deprived hippocampal slice cultures. NMDAR agonist- and antagonist-functionalized polymersomes targeted selectively neurons over glial cells in mixed cultures. Collectively, the study reveals the successful incorporation into polymersomes of biologically active trophic factors and small hydrophilic agents that retain their biological activity in vitro, as demonstrated in selected central and peripheral tissue models.
SUBMITTER: Moquin A
PROVIDER: S-EPMC6217674 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA