Unknown

Dataset Information

0

Polyphenol-Rich Extracts from Cotoneaster Leaves Inhibit Pro-Inflammatory Enzymes and Protect Human Plasma Components against Oxidative Stress In Vitro.


ABSTRACT: The present study investigated the phenolic profile and biological activity of dry extracts from leaves of C. bullatus, C. zabelii and C. integerrimus-traditional medicinal and dietary plants-and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS³, HPLC-PDA-fingerprint, Folin-Ciocalteu, and n-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse polyphenols (47 analytes, content up to 650.8 mg GAE/g dw) with proanthocyanidins (83.3?358.2 mg CYE/g) dominating in C. bullatus and C. zabelii, and flavonoids (53.4?147.8 mg/g) in C. integerrimus. In chemical in vitro tests of pro-inflammatory enzymes (lipoxygenase, hyaluronidase) inhibition and antioxidant activity (DPPH, FRAP), the extracts effects were dose-, phenolic- and extraction solvent-dependent. The most promising polyphenolic extracts were demonstrated to be effective antioxidants in a biological model of human blood plasma-at in vivo-relevant levels (1?5 µg/mL) they normalized/enhanced the non-enzymatic antioxidant capacity of plasma and effectively prevented peroxynitrite-induced oxidative/nitrative damage of plasma proteins and lipids. As demonstrated in cytotoxicity tests, the extracts were safe-they did not affect viability of human peripheral blood mononuclear cells. In conclusion, Cotoneaster leaves may be useful in development of natural-based products, supporting the treatment of oxidative stress/inflammation-related chronic diseases, including cardiovascular disorders.

SUBMITTER: Kicel A 

PROVIDER: S-EPMC6222437 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polyphenol-Rich Extracts from <i>Cotoneaster</i> Leaves Inhibit Pro-Inflammatory Enzymes and Protect Human Plasma Components against Oxidative Stress In Vitro.

Kicel Agnieszka A   Kolodziejczyk-Czepas Joanna J   Owczarek Aleksandra A   Marchelak Anna A   Sopinska Malgorzata M   Ciszewski Pawel P   Nowak Pawel P   Olszewska Monika A MA  

Molecules (Basel, Switzerland) 20180926 10


The present study investigated the phenolic profile and biological activity of dry extracts from leaves of <i>C. bullatus</i>, <i>C. zabelii</i> and <i>C. integerrimus</i>-traditional medicinal and dietary plants-and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS³, HPLC-PDA-fingerprint, Folin-Ciocalteu, and <i>n</i>-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse  ...[more]

Similar Datasets

| S-EPMC6479601 | biostudies-literature
| S-EPMC7143368 | biostudies-literature
| S-EPMC4882685 | biostudies-literature
| S-EPMC6770854 | biostudies-literature
| S-EPMC6274135 | biostudies-literature
| S-EPMC7555463 | biostudies-literature
| S-EPMC7023040 | biostudies-literature
| S-EPMC6359159 | biostudies-literature
| S-EPMC8037402 | biostudies-literature
| S-EPMC9920934 | biostudies-literature