Unknown

Dataset Information

0

Treating loss-to-follow-up as a missing data problem: a case study using a longitudinal cohort of HIV-infected patients in Haiti.


ABSTRACT:

Background

HIV programs are often assessed by the proportion of patients who are alive and retained in care; however some patients are categorized as lost to follow-up (LTF) and have unknown vital status. LTF is not an outcome but a mixed category of patients who have undocumented death, transfer and disengagement from care. Estimating vital status (dead versus alive) among this category is critical for survival analyses and program evaluation.

Methods

We used three methods to estimate survival in the cohort and to ascertain factors associated with death among the first cohort of HIV positive patients to receive antiretroviral therapy in Haiti: complete case (CC) (drops missing), Inverse Probability Weights (IPW) (uses tracking data) and Multiple Imputation with Chained Equations (MICE) (imputes missing data). Logistic regression was used to calculate odds ratios and 95% confidence intervals for adjusted models for death at 10 years. The logistic regression models controlled for sex, age, severe poverty (living on <$1 USD per day), Port-au-Prince residence and baseline clinical characteristics of weight, CD4, WHO stage and tuberculosis diagnosis.

Results

Age, severe poverty, baseline weight and WHO stage were statistically significant predictors of AIDS related mortality across all models. Gender was only statistically significant in the MICE model but had at least a 10% difference in odds ratios across all models.

Conclusion

Each of these methods had different assumptions and differed in the number of observations included due to how missing values were addressed. We found MICE to be most robust in predicting survival status as it allowed us to impute missing data so that we had the maximum number of observations to perform regression analyses. MICE also provides a complementary alternative for estimating survival among patients with unassigned vital status. Additionally, the results were easier to interpret, less likely to be biased and provided an alternative to a problem that is often commented upon in the extant literature.

SUBMITTER: Jannat-Khah DP 

PROVIDER: S-EPMC6245624 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Treating loss-to-follow-up as a missing data problem: a case study using a longitudinal cohort of HIV-infected patients in Haiti.

Jannat-Khah Deanna P DP   Unterbrink Michelle M   McNairy Margaret M   Pierre Samuel S   Fitzgerald Dan W DW   Pape Jean J   Evans Arthur A  

BMC public health 20181119 1


<h4>Background</h4>HIV programs are often assessed by the proportion of patients who are alive and retained in care; however some patients are categorized as lost to follow-up (LTF) and have unknown vital status. LTF is not an outcome but a mixed category of patients who have undocumented death, transfer and disengagement from care. Estimating vital status (dead versus alive) among this category is critical for survival analyses and program evaluation.<h4>Methods</h4>We used three methods to est  ...[more]

Similar Datasets

| S-EPMC6082173 | biostudies-literature
| S-EPMC5990495 | biostudies-literature
| S-EPMC2925143 | biostudies-literature
| S-EPMC6748564 | biostudies-literature
| S-EPMC3808780 | biostudies-other
2005-01-18 | GSE1907 | GEO
| S-EPMC4179921 | biostudies-literature
| S-EPMC4499577 | biostudies-literature
| S-EPMC9009635 | biostudies-literature
| S-EPMC3654002 | biostudies-literature