Unknown

Dataset Information

0

Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.


ABSTRACT: During embryogenesis, cells acquire distinct fates by transitioning through transcriptional states. To uncover these transcriptional trajectories during zebrafish embryogenesis, we sequenced 38,731 cells and developed URD, a simulated diffusion-based computational reconstruction method. URD identified the trajectories of 25 cell types through early somitogenesis, gene expression along them, and their spatial origin in the blastula. Analysis of Nodal signaling mutants revealed that their transcriptomes were canalized into a subset of wild-type transcriptional trajectories. Some wild-type developmental branch points contained cells that express genes characteristic of multiple fates. These cells appeared to trans-specify from one fate to another. These findings reconstruct the transcriptional trajectories of a vertebrate embryo, highlight the concurrent canalization and plasticity of embryonic specification, and provide a framework with which to reconstruct complex developmental trees from single-cell transcriptomes.

SUBMITTER: Farrell JA 

PROVIDER: S-EPMC6247916 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.

Farrell Jeffrey A JA   Wang Yiqun Y   Riesenfeld Samantha J SJ   Shekhar Karthik K   Regev Aviv A   Schier Alexander F AF  

Science (New York, N.Y.) 20180426 6392


During embryogenesis, cells acquire distinct fates by transitioning through transcriptional states. To uncover these transcriptional trajectories during zebrafish embryogenesis, we sequenced 38,731 cells and developed URD, a simulated diffusion-based computational reconstruction method. URD identified the trajectories of 25 cell types through early somitogenesis, gene expression along them, and their spatial origin in the blastula. Analysis of Nodal signaling mutants revealed that their transcri  ...[more]

Similar Datasets

2018-04-27 | GSE106587 | GEO
| PRJNA417291 | ENA
| S-EPMC3931741 | biostudies-literature
| S-EPMC11239525 | biostudies-literature
| S-EPMC10356945 | biostudies-literature
| S-EPMC8920898 | biostudies-literature
| S-EPMC7572359 | biostudies-literature
2022-03-11 | GSE186070 | GEO
2023-07-20 | E-MTAB-12719 | biostudies-arrayexpress
| S-EPMC5832860 | biostudies-literature