Unknown

Dataset Information

0

Frogs adapt to physiologically costly anthropogenic noise.


ABSTRACT: Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespread sensory 'pollutant'. We collected eggs of wood frogs (Rana sylvatica) from populations from different traffic noise regimes, reared hatchlings under the same conditions, and tested frogs for differences in sublethal fitness-relevant effects of noise. We show that prolonged noise impaired production of antimicrobial peptides associated with defence against disease. Additionally, noise and origin site interacted to impact immune and stress responses. Noise exposure altered leucocyte production and increased baseline levels of the stress-relevant glucocorticoid, corticosterone, in frogs from quiet sites, but noise-legacy populations were unaffected. These results suggest noise-legacy populations have adapted to avoid fitness-relevant physiological costs of traffic noise. These findings advance our understanding of the consequences of novel soundscapes and reveal a pathway by which anthropogenic disturbance can enable adaptation to novel environments.

SUBMITTER: Tennessen JB 

PROVIDER: S-EPMC6253376 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Frogs adapt to physiologically costly anthropogenic noise.

Tennessen Jennifer B JB   Parks Susan E SE   Swierk Lindsey L   Reinert Laura K LK   Holden Whitney M WM   Rollins-Smith Louise A LA   Walsh Koranda A KA   Langkilde Tracy T  

Proceedings. Biological sciences 20181121 1891


Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespr  ...[more]

Similar Datasets

| S-EPMC6533676 | biostudies-literature
| S-EPMC5415529 | biostudies-literature
| S-EPMC3290562 | biostudies-literature
| S-EPMC4748250 | biostudies-other
| S-EPMC7191250 | biostudies-literature
| S-EPMC5834586 | biostudies-literature
| S-EPMC5830790 | biostudies-literature
| S-EPMC6892517 | biostudies-literature
| S-EPMC3789146 | biostudies-literature
| S-EPMC7209062 | biostudies-literature