Unknown

Dataset Information

0

Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast.


ABSTRACT: Genome-wide sequence divergence between populations can cause hybrid sterility through the action of the anti-recombination system, which rejects crossover repair of double strand breaks between nonidentical sequences. Because crossovers are necessary to ensure proper segregation of homologous chromosomes during meiosis, the reduced recombination rate in hybrids can result in high levels of nondisjunction and therefore low gamete viability. Hybrid sterility in interspecific crosses of Saccharomyces yeasts is known to be associated with such segregation errors, but estimates of the importance of nondisjunction to postzygotic reproductive isolation have been hampered by difficulties in accurately measuring nondisjunction frequencies. Here, we use spore-autonomous fluorescent protein expression to quantify nondisjunction in both interspecific and intraspecific yeast hybrids. We show that segregation is near random in interspecific hybrids. The observed rates of nondisjunction can explain most of the sterility observed in interspecific hybrids through the failure of gametes to inherit at least one copy of each chromosome. Partially impairing the anti-recombination system by preventing expression of the RecQ helicase SGS1 during meiosis cuts nondisjunction frequencies in half. We further show that chromosome loss through nondisjunction can explain nearly all of the sterility observed in hybrids formed between two populations of a single species. The rate of meiotic nondisjunction of each homologous pair was negatively correlated with chromosome size in these intraspecific hybrids. Our results demonstrate that sequence divergence is not only associated with the sterility of hybrids formed between distantly related species but may also be a direct cause of reproductive isolation in incipient species.

SUBMITTER: Rogers DW 

PROVIDER: S-EPMC6258379 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast.

Rogers David W DW   McConnell Ellen E   Ono Jasmine J   Greig Duncan D  

PLoS biology 20181112 11


Genome-wide sequence divergence between populations can cause hybrid sterility through the action of the anti-recombination system, which rejects crossover repair of double strand breaks between nonidentical sequences. Because crossovers are necessary to ensure proper segregation of homologous chromosomes during meiosis, the reduced recombination rate in hybrids can result in high levels of nondisjunction and therefore low gamete viability. Hybrid sterility in interspecific crosses of Saccharomy  ...[more]

Similar Datasets

| S-EPMC5679441 | biostudies-literature
| S-EPMC7162695 | biostudies-literature
| S-EPMC4443816 | biostudies-literature
| S-EPMC37449 | biostudies-literature
2018-08-23 | GSE111078 | GEO
| S-EPMC6687892 | biostudies-literature
| S-EPMC4579388 | biostudies-literature
| S-EPMC10008630 | biostudies-literature
| S-EPMC3839911 | biostudies-literature
| S-EPMC8265792 | biostudies-literature