Unknown

Dataset Information

0

A new look at effective interactions between microgel particles.


ABSTRACT: Thermoresponsive microgels find widespread use as colloidal model systems, because their temperature-dependent size allows facile tuning of their volume fraction in situ. However, an interaction potential unifying their behavior across the entire phase diagram is sorely lacking. Here we investigate microgel suspensions in the fluid regime at different volume fractions and temperatures, and in the presence of another population of small microgels, combining confocal microscopy experiments and numerical simulations. We find that effective interactions between microgels are clearly temperature dependent. In addition, microgel mixtures possess an enhanced stability compared to hard colloid mixtures - a property not predicted by a simple Hertzian model. Based on numerical calculations we propose a multi-Hertzian model, which reproduces the experimental behavior for all studied conditions. Our findings highlight that effective interactions between microgels are much more complex than usually assumed, displaying a crucial dependence on temperature and on the internal core-corona architecture of the particles.

SUBMITTER: Bergman MJ 

PROVIDER: S-EPMC6262015 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A new look at effective interactions between microgel particles.

Bergman Maxime J MJ   Gnan Nicoletta N   Obiols-Rabasa Marc M   Meijer Janne-Mieke JM   Rovigatti Lorenzo L   Zaccarelli Emanuela E   Schurtenberger Peter P  

Nature communications 20181128 1


Thermoresponsive microgels find widespread use as colloidal model systems, because their temperature-dependent size allows facile tuning of their volume fraction in situ. However, an interaction potential unifying their behavior across the entire phase diagram is sorely lacking. Here we investigate microgel suspensions in the fluid regime at different volume fractions and temperatures, and in the presence of another population of small microgels, combining confocal microscopy experiments and num  ...[more]

Similar Datasets

| S-EPMC4042682 | biostudies-literature
| S-EPMC6096451 | biostudies-literature
2014-03-25 | GSE54583 | GEO
| S-EPMC5456439 | biostudies-other
| S-EPMC3438367 | biostudies-literature
| S-EPMC9933614 | biostudies-literature
2014-03-25 | E-GEOD-54583 | biostudies-arrayexpress
| S-EPMC4990268 | biostudies-literature
| S-EPMC5519546 | biostudies-literature
| S-EPMC3384133 | biostudies-literature