Artificial MicroRNA-Mediated Inhibition of Japanese Encephalitis Virus Replication in Neuronal Cells.
Ontology highlight
ABSTRACT: Artificial microRNA (amiRNA)-mediated inhibition of viral replication has recently gained importance as a strategy for antiviral therapy. In this study, we evaluated the benefit of using the amiRNA vector against Japanese encephalitis virus (JEV). We designed three single amiRNA sequences against the consensus sequence of 3' untranslated region (3'UTR) of JEV and tested their efficacy against cell culture-grown JEV Vellore strain (P20778) in neuronal cells. The binding ability of three amiRNAs on 3'UTR region was tested in vitro in HEK293T cells using a JEV 3'UTR tagged with luciferase reporter vector. Transient transfection of amiRNAs was nontoxic to cells as evident from the MTT assay and caused minimal induction in interferon-stimulated gene expression. Furthermore, our result suggested that transient expression of two amiRNAs (amiRNA #1 and amiRNA #2) significantly reduced intracellular viral RNA and nonstructural 1 (NS1) protein, as well as diminished infectious viral particle release up to 95% in the culture supernatant as evident from viral plaque reduction assay. Overall, our results indicated that RNA interference based on amiRNAs targeting viral conserved regions at 3'UTR was a useful approach for improvements of nucleic acid inhibitors against JEV.
SUBMITTER: Sharma H
PROVIDER: S-EPMC6277082 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA