Project description:BACKGROUND:Monoclonal immunoglobulin deposition disease (MIDD) is a rare condition accounting for <?1% of histopathological diagnoses made on kidney biopsy1. The best outcomes are seen in those diagnosed and treated promptly, but delay to diagnosis is common with the largest series reporting a median time from onset of renal impairment to diagnosis of 12 months2. Here, we report a case of the heavy chain subset of MIDD presenting with positive anti-glomerular basement membrane (anti-GBM) antibodies obscuring the true diagnosis. CASE PRESENTATION:Here, we present a challenging case presenting with oedema, haematoproteiuria, and new renal impairment. Anti-GBM antibodies were positive and prompted treatment as atypical anti-GBM disease. However, they were ultimately proven to be monoclonal and secondary to myeloma. The final diagnosis facilitated effective myeloma treatment which led to complete remission and independence from renal replacement therapy. CONCLUSIONS:This case reinforces the importance of comprehensive histopathological and haematological assessment in making the correct diagnosis. Here it facilitated effective treatment and recovery of renal function.
Project description:Light and heavy chain deposition disease (LHCDD) is a rare complication of monoclonal gammopathy. In all documented cases, LHCDD is the association of deposits of a monoclonal light chain with a normal heavy chain, especially in the kidneys. We describe here a 78-year-old woman whose renal biopsy showed nodular glomerulosclerosis, initially diagnosed as diabetic nephropathy. Detailed kidney biopsy immunofluorescence study corrected the diagnosis to ?1-?-LHCDD. Advanced immunoblot analysis showed deletion of CH1 in the both blood and kidney heavy chain. We report here, to our knowledge, the first case of ?1 LHCDD associated with a deletion of CH1.
Project description:Lyme disease (Borrelia burgdorferi infection) is increasingly recognized as a significant source of morbidity world-wide. Here, we investigated B cell responses to Lyme disease through molecular identifier-enabled antibody heavy chain sequencing of bulk B cells from PBMCs. Single-cell immunoglobulin sequencing of paired heavy- and light-chain genes from this project will also be separately deposited. Additional information regarding patient characteristics and overlap with other data from the SLICE study is available upon request.
Project description:Light-chain deposition disease (LCDD) is characterized by tissue deposition of the immunoglobulin light chains in multiple organs. These deposits appear similar to amyloid on routine sections, but differ in their staining properties and ultrastructural appearance. The deposits of LCCD are non -Congophilic and do not exhibit a fibrillar ultrastructure; while, the proteinaceous substance seen in primary amyloidosis is Congo red positive and fibrillar. One of the most common organs to be involved in LCDD is the kidney. Earlier reports on cases of LCDD have mostly shown simultaneous liver and renal involvement, there are very few cases in the literature describing LCDD of the liver without renal involvement. This report describes a patient who presented with severe cholestatic jaundice and liver cell failure with normal renal function.
Project description:Immunoglobulin tau (IgT) is a new teleost immunoglobulin isotype, and its potential function in adaptive immunity is not very clear. In the present study, the membrane-bound and secreted IgT (mIgT and sIgT) heavy chain genes were cloned for the first time and characterized in flounder (Paralichthys olivaceus), and found the nucleic acid sequence were exactly same in the Cτ1-Cτ4 constant domains of mIgT and sIgT, but different in variable regions and the C-terminus. The amino acid sequence of mIgT shared higher similarity with Bovichtus diacanthus (51.2%) and Dicentrarchus labrax (45.0%). Amino acid of flounder IgT, IgM, and IgD heavy chain was compared and the highest similarity was found between IgT Cτ1 and IgM Cμ1 (38%). In healthy flounder, the transcript levels of IgT mRNA were the highest in gill, spleen, and liver, and higher in peripheral blood leucocytes, skin, and hindgut. After infection and vaccination with Edwardsiella tarda via intraperitoneal injection and immersion, the qRT-PCR analysis demonstrated that the IgT mRNA level was significantly upregulated in all tested tissues, with similar dynamic tendency that increased firstly and then decreased, and higher in gill, skin, hindgut, liver, and stomach in immersion than in the injection group, but no significant difference existed in spleen and head kidney between immersion and injection groups. These results revealed that IgT responses could be simultaneously induced in both mucosal and systemic tissues after infection/vaccination via injection and immersion route, but IgT might play a more important role in mucosal immunity than in systemic immunity.
Project description:We have isolated a human cDNA which corresponds to a developmentally regulated sarcomeric myosin heavy chain. RNA hybridization and DNA sequence analysis indicate that this cDNA, called SMHCP, encodes a perinatal myosin heavy chain isoform. The nucleotide and deduced amino acid sequences of the 3.4-kb cDNA insert show strong homology with other sarcomeric myosin heavy chains. The strongest homology is to a previously described 970-bp cDNA encoding a rat perinatal isoform (Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. J. Biol. Chem. 259:13573-13578). The homology between the analogous human and rat perinatal myosin heavy chain cDNAs is maintained through the highly isoform-specific final 20 carboxyl-terminal amino acids, as well as the 3' untranslated region. Ribonuclease protection studies show that the mRNA encoding this isoform is expressed at high levels in 21-wk fetal skeletal tissue and not in fetal cardiac muscle. In contrast to the rat perinatal isoform, which was not found to be expressed in adult hind-leg tissue, the gene encoding SMHCP continues to be expressed in adult human skeletal tissue, but at lower levels relative to fetal skeletal tissue.
Project description:Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host's defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.