Ontology highlight
ABSTRACT: Aims
Abnormal computed tomography coronary angiography (CTCA) often leads to stress testing to determine haemodynamic significance of stenosis. We hypothesized that instead, this could be achieved by fusion imaging of the coronary anatomy with 3D echocardiography (3DE)-derived resting myocardial deformation.Methods and results
We developed fusion software that creates combined 3D displays of the coronary arteries with colour maps of longitudinal strain and tested it in 28 patients with chest pain, referred for CTCA (256 Philips scanner) who underwent 3DE (Philips iE33) and regadenoson stress CT. To obtain a reference for stenosis significance, coronaries were also fused with colour maps of stress myocardial perfusion. 3D displays were used to detect stress perfusion defect (SPD) and/or resting strain abnormality (RSA) in each territory. CTCA showed 56 normal arteries, stenosis <50% in 17, and >50% in 8 arteries. Of the 81 coronary territories, SPDs were noted in 20 and RSAs in 29. Of the 59 arteries with no stenosis >50% and no SPDs, considered as normal, 12 (20%) had RSAs. Conversely, with stenosis >50% and SPDs (haemodynamically significant), RSAs were considerably more frequent (5/6 = 83%). Overall, resting strain and stress perfusion findings were concordant in 64/81 arteries (79% agreement).Conclusions
Fusion of CTCA and 3DE-derived data allows direct visualization of each coronary artery and strain in its territory. In this feasibility study, resting strain showed good agreement with stress perfusion, indicating that it may be potentially used to assess haemodynamic impact of coronary stenosis, as an alternative to stress testing that entails additional radiation exposure.
SUBMITTER: Maffessanti F
PROVIDER: S-EPMC6279096 | biostudies-literature |
REPOSITORIES: biostudies-literature