Unknown

Dataset Information

0

Ultrathin Si/CNTs Paper-Like Composite for Flexible Li-Ion Battery Anode With High Volumetric Capacity.


ABSTRACT: Thin and lightweight flexible lithium-ion batteries (LIBs) with high volumetric capacities are crucial for the development of flexible electronic devices. In the present work, we reported a paper-like ultrathin and flexible Si/carbon nanotube (CNT) composite anode for LIBs, which was realized by conformal electrodeposition of a thin layer of silicon on CNTs at ambient temperature. This method was quite simple and easy to scale up with low cost as compared to other deposition techniques, such as sputtering or CVD. The flexible Si/CNT composite exhibited high volumetric capacities in terms of the total volume of active material and current collector, surpassing the most previously reported Si-based flexible electrodes at various rates. In addition, the poor initial coulombic efficiency of the Si/CNT composites can be effectively improved by prelithiation treatment and a commercial red LED can be easily lighted by a full pouch cell using a Si/CNT composite as a flexible anode under flat or bent states. Therefore, the ultrathin and flexible Si/CNT composite is highly attractive as an anode material for flexible LIBs.

SUBMITTER: Fu J 

PROVIDER: S-EPMC6300474 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrathin Si/CNTs Paper-Like Composite for Flexible Li-Ion Battery Anode With High Volumetric Capacity.

Fu Jinzhou J   Liu Hao H   Liao Libing L   Fan Peng P   Wang Zhen Z   Wu Yuanyuan Y   Zhang Ziwei Z   Hai Yun Y   Lv Guocheng G   Mei Lefu L   Hao Huiying H   Xing Jie J   Dong Jingjing J  

Frontiers in chemistry 20181213


Thin and lightweight flexible lithium-ion batteries (LIBs) with high volumetric capacities are crucial for the development of flexible electronic devices. In the present work, we reported a paper-like ultrathin and flexible Si/carbon nanotube (CNT) composite anode for LIBs, which was realized by conformal electrodeposition of a thin layer of silicon on CNTs at ambient temperature. This method was quite simple and easy to scale up with low cost as compared to other deposition techniques, such as  ...[more]

Similar Datasets

| S-EPMC7770921 | biostudies-literature
| S-EPMC9038024 | biostudies-literature
| S-EPMC9486947 | biostudies-literature
| S-EPMC9418113 | biostudies-literature
| S-EPMC6645060 | biostudies-literature
| S-EPMC4989224 | biostudies-literature
| S-EPMC7589054 | biostudies-literature
| S-EPMC10179881 | biostudies-literature
| S-EPMC10051277 | biostudies-literature
| S-EPMC8981444 | biostudies-literature