Unknown

Dataset Information

0

Sigma Factor-Mediated Tuning of Bacterial Cell-Free Synthetic Genetic Oscillators.


ABSTRACT: Cell-free transcription-translation provides a simplified prototyping environment to rapidly design and study synthetic networks. Despite the presence of a well characterized toolbox of genetic elements, examples of genetic networks that exhibit complex temporal behavior are scarce. Here, we present a genetic oscillator implemented in an E. coli-based cell-free system under steady-state conditions using microfluidic flow reactors. The oscillator has an activator-repressor motif that utilizes the native transcriptional machinery of E. coli: the RNAP and its associated sigma factors. We optimized a kinetic model with experimental data using an evolutionary algorithm to quantify the key regulatory model parameters. The functional modulation of the RNAP was investigated by coupling two oscillators driven by competing sigma factors, allowing the modification of network properties by means of passive transcriptional regulation.

SUBMITTER: Yelleswarapu M 

PROVIDER: S-EPMC6305555 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sigma Factor-Mediated Tuning of Bacterial Cell-Free Synthetic Genetic Oscillators.

Yelleswarapu Maaruthy M   van der Linden Ardjan J AJ   van Sluijs Bob B   Pieters Pascal A PA   Dubuc Emilien E   de Greef Tom F A TFA   Huck Wilhelm T S WTS  

ACS synthetic biology 20181119 12


Cell-free transcription-translation provides a simplified prototyping environment to rapidly design and study synthetic networks. Despite the presence of a well characterized toolbox of genetic elements, examples of genetic networks that exhibit complex temporal behavior are scarce. Here, we present a genetic oscillator implemented in an E. coli-based cell-free system under steady-state conditions using microfluidic flow reactors. The oscillator has an activator-repressor motif that utilizes the  ...[more]

Similar Datasets

| S-EPMC4714972 | biostudies-literature
| S-EPMC4841678 | biostudies-literature
| S-EPMC3063688 | biostudies-literature
| S-EPMC4295088 | biostudies-literature
| S-EPMC4191881 | biostudies-literature
| S-EPMC3161345 | biostudies-literature
| S-EPMC8218305 | biostudies-literature
| S-EPMC4104065 | biostudies-literature
| S-EPMC9246901 | biostudies-literature
| S-EPMC2795558 | biostudies-literature