Unknown

Dataset Information

0

Using Integrative Analysis of DNA Methylation and Gene Expression Data in Multiple Tissue Types to Prioritize Candidate Genes for Drug Development in Obesity.


ABSTRACT: Obesity has become a major public health issue which is caused by a combination of genetic and environmental factors. Genome-wide DNA methylation studies have identified that DNA methylation at Cytosine-phosphate-Guanine (CpG) sites are associated with obesity. However, subsequent functional validation of the results from these studies has been challenging given the high number of reported associations. In this study, we applied an integrative analysis approach, aiming to prioritize the drug development candidate genes from many associated CpGs. Association data was collected from previous genome-wide DNA methylation studies and combined using a sample-size-weighted strategy. Gene expression data in adipose tissues and enriched pathways of the affiliated genes were overlapped, to shortlist the associated CpGs. The CpGs with the most overlapping evidence were indicated as the most appropriate CpGs for future studies. Our results revealed that 119 CpGs were associated with obesity (p ? 1.03 × 10-7). Of the affiliated genes, SOCS3 was the only gene involved in all enriched pathways and was differentially expressed in both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). In conclusion, our integrative analysis is an effective approach in highlighting the DNA methylation with the highest drug development relevance. SOCS3 may serve as a target for drug development of obesity and its complications.

SUBMITTER: Guo Q 

PROVIDER: S-EPMC6305755 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using Integrative Analysis of DNA Methylation and Gene Expression Data in Multiple Tissue Types to Prioritize Candidate Genes for Drug Development in Obesity.

Guo Qingjie Q   Zheng Ruonan R   Huang Jiarui J   He Meng M   Wang Yuhan Y   Guo Zonghao Z   Sun Liankun L   Chen Peng P  

Frontiers in genetics 20181219


Obesity has become a major public health issue which is caused by a combination of genetic and environmental factors. Genome-wide DNA methylation studies have identified that DNA methylation at Cytosine-phosphate-Guanine (CpG) sites are associated with obesity. However, subsequent functional validation of the results from these studies has been challenging given the high number of reported associations. In this study, we applied an integrative analysis approach, aiming to prioritize the drug dev  ...[more]

Similar Datasets

| S-EPMC8280036 | biostudies-literature
2024-05-17 | PXD049084 | Pride
| S-EPMC3878333 | biostudies-literature
| S-EPMC5220399 | biostudies-literature
| S-EPMC3903472 | biostudies-literature
| S-EPMC4090166 | biostudies-literature
| S-EPMC8874150 | biostudies-literature
| S-EPMC8592116 | biostudies-literature
| S-EPMC10944835 | biostudies-literature
| S-EPMC6923402 | biostudies-literature