Materials count: Linear-spatial materials improve young children's addition strategies and accuracy, irregular arrays don't.
Ontology highlight
ABSTRACT: Children who use advanced arithmetic strategies, such as count-on and decomposition, are more accurate when solving arithmetic problems and are more likely to later have higher levels of math achievement. The present study tested the hypothesis that instruction using linear-spatial representations would activate children's knowledge necessary for use of mental addition strategies and, thus, lead to greater accuracy on addition problems, than instruction using irregular representations of magnitude. As predicted, low-income kindergartners (n = 29) randomly assigned to practice sums up to 10 using materials that instantiated the linear-spatial features of a mental number line (i.e., discrete squares arranged in rows) demonstrated substantially more improvement in solving unpracticed addition problems than children who practiced with irregular materials (i.e., pictures of stars arranged in random arrays). This was particularly true for children with better initial numerical knowledge, which provided support for the idea that existing knowledge was activated. The use of count-on more than doubled from pretest to posttest among children in the linear-spatial condition and this mediated the difference in improvement between conditions. The importance of aligning instructional materials to relevant mental representations-consistent with the Cognitive Alignment Framework for instructional design-is discussed.
SUBMITTER: Schiffman J
PROVIDER: S-EPMC6312299 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA