Downstream targets of GWAS-detected genes for breast, lung, and prostate and colon cancer converge to G1/S transition pathway.
Ontology highlight
ABSTRACT: Genome-wide association studies (GWASs) identified over 500 single nucleotide polymorphisms (SNPs) influencing cancer risk. It is logical to expect the cancer-associated genes to cluster in pathways directly involved in carcinogenesis, e.g. cell cycle. Nevertheless, analyses of the GWAS-detected cancer risk genes usually show no or weak enrichment by known cancer genes.We hypothesized that GWAS-detected cancer risk-associated genes function as upstream regulators of the genes directly involved in carcinogenesis. We have analyzed four common cancers: breast, colon, lung, and prostate. To identify downstream targets of GWAS-detected cancer risk genes we used MedScan, which is a text mining tool offered by PathwayStudio. We also used data on protein/protein interactions reported by BioGRID database. Among all identified targets we have selected common downstream targets. A gene was considered a common downstream target if it was a downstream target for at least three GWAS-detected genes for a given cancer type. Common downstream targets were identified separately for each cancer type. We found that common downstream targets for all four cancer types were enriched by cell cycle genes, more specifically, the genes involved in G1/S transition. Common downstream targets for bipolar disorder, Crohn's disease, and type 2 diabetes did not show G1/S transition enrichment.The results of this analysis suggest that many cancer risk genes function as upstream regulators of the genes directly involved in G1/S transition and exert their risk effects by reducing threshold for G1/S transition, elevating the background level of cell proliferation and cancer risk.
SUBMITTER: Gorlova OY
PROVIDER: S-EPMC6317572 | biostudies-literature | 2017 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA