Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking.
Ontology highlight
ABSTRACT: RNA-protein complexes underlie numerous cellular processes including translation, splicing, and posttranscriptional regulation of gene expression. The structures of these complexes are crucial to their functions but often elude high-resolution structure determination. Computational methods are needed that can integrate low-resolution data for RNA-protein complexes while modeling de novo the large conformational changes of RNA components upon complex formation. To address this challenge, we describe RNP-denovo, a Rosetta method to simultaneously fold-and-dock RNA to a protein surface. On a benchmark set of diverse RNA-protein complexes not solvable with prior strategies, RNP-denovo consistently sampled native-like structures with better than nucleotide resolution. We revisited three past blind modeling challenges involving the spliceosome, telomerase, and a methyltransferase-ribosomal RNA complex in which previous methods gave poor results. When coupled with the same sparse FRET, crosslinking, and functional data used previously, RNP-denovo gave models with significantly improved accuracy. These results open a route to modeling global folds of RNA-protein complexes from low-resolution data.
SUBMITTER: Kappel K
PROVIDER: S-EPMC6318048 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA