Unknown

Dataset Information

0

AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.


ABSTRACT: MOTIVATION:Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. RESULTS:Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. AVAILABILITY AND IMPLEMENTATION:ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. SUPPLEMENTARY INFORMATION:Supplementary data are available at Bioinformatics online.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC6954657 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.

Zhang Yuqi Y   Sanner Michel F MF  

Bioinformatics (Oxford, England) 20191201 24


<h4>Motivation</h4>Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.<h4>Results</h4>Here we present AutoDock CrankPep or ADCP in short  ...[more]

Similar Datasets

| S-EPMC8748686 | biostudies-literature
| S-EPMC6318048 | biostudies-literature
| S-EPMC4868550 | biostudies-literature
| S-EPMC6480567 | biostudies-literature
| S-EPMC7737999 | biostudies-literature
| S-EPMC3936310 | biostudies-literature
| S-EPMC4797978 | biostudies-literature
| S-EPMC3952135 | biostudies-literature
| S-EPMC6274120 | biostudies-literature
| S-EPMC7394329 | biostudies-literature