AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.
Ontology highlight
ABSTRACT: MOTIVATION:Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. RESULTS:Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. AVAILABILITY AND IMPLEMENTATION:ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. SUPPLEMENTARY INFORMATION:Supplementary data are available at Bioinformatics online.
SUBMITTER: Zhang Y
PROVIDER: S-EPMC6954657 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA