Project description:In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Project description:Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Project description:Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Project description:Abstract Patients with rare central nervous system (CNS) tumors typically have a poor prognosis and limited therapeutic options. Historically, these cancers have been difficult to study due to small number of patients. Recent technological advances have identified molecular drivers of some of these rare cancers which we can now use to generate representative preclinical models of these diseases. In this review, we outline the advantages and disadvantages of different models, emphasizing the utility of various in vitro and ex vivo models for target discovery and mechanistic inquiry and multiple in vivo models for therapeutic validation. We also highlight recent literature on preclinical model generation and screening approaches for ependymomas, histone mutated high-grade gliomas, and atypical teratoid rhabdoid tumors, all of which are rare CNS cancers that have recently established genetic or epigenetic drivers. These preclinical models are critical to advancing targeted therapeutics for these rare CNS cancers that currently rely on conventional treatments.
Project description:Limited research exists regarding the most aggressive forms of hepatoblastoma. Cell lines of the rare subtypes of hepatoblastoma with poor prognosis are not only difficult to attain but also challenging to characterize histologically. A community-driven approach to educating parents and families, regarding the need for donated tissue, is necessary for scientists to have access to resources for murine models and drug discovery. Herein, we describe the currently available resources, existing gaps in research, and the path to move forward for uniform cure of hepatoblastoma.
Project description:Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Project description:Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Project description:Soft tissue sarcomas (STS) are a rare, complex, heterogeneous group of mesenchymal neoplasms with over 150 different histological subtypes. Treatments for this malignancy have been especially challenging due to the heterogeneity of the disease and the modest efficacy of conventional chemotherapy. The next frontier lies in discerning the molecular pathways in which these mesenchymal neoplasms arise, metastasize, and develop drug-resistance, thereby helping guide new therapeutic targets for the treatment of STS. This comprehensive review will discuss the current understanding of tumorigenesis of specific STS subtypes, including oncogenic pathway alterations involved in cell cycle regulation, angiogenesis, NOTCH signaling, and aberrant genetic rearrangements. It will then review current therapies that have been recently developed to target these pathways, including a review of ongoing clinical studies for targeted sarcoma treatment, as well as discuss new potential avenues for therapies against known molecular pathways of sarcomagenesis.
Project description:BACKGROUND:Breast cancer (BC) is a heterogeneous disease for which the commonly used chemotherapeutic agents primarily include the anthracyclines (doxorubicin, epirubicin), microtubule inhibitors (paclitaxel, docetaxel, eribulin), and alkylating agents (cyclophosphamide). While these drugs can be highly effective, metastatic tumours are frequently refractory to treatment or become resistant upon tumour relapse. METHODS:We undertook a cell polarity/epithelial mesenchymal plasticity (EMP)-enriched short hairpin RNA (shRNA) screen in MDA-MB-468 breast cancer cells to identify factors underpinning heterogeneous responses to three chemotherapeutic agents used clinically in breast cancer: Doxorubicin, docetaxel, and eribulin. shRNA-transduced cells were treated for 6 weeks with the EC10 of each drug, and shRNA representation assessed by deep sequencing. We first identified candidate genes with depleted shRNA, implying that their silencing could promote a response. Using the Broad Institute's Connectivity Map (CMap), we identified partner inhibitors targeting the identified gene families that may induce cell death in combination with doxorubicin, and tested them with all three drug treatments. RESULTS:In total, 259 shRNAs were depleted with doxorubicin treatment (at p < 0.01), 66 with docetaxel, and 25 with eribulin. Twenty-four depleted hairpins overlapped between doxorubicin and docetaxel, and shRNAs for TGFB2, RUNX1, CCDC80, and HYOU1 were depleted across all the three drug treatments. Inhibitors of MDM/TP53, TGFBR, and FGFR were identified by CMap as the top pharmaceutical perturbagens and we validated the combinatorial benefits of the TGFBR inhibitor (SB525334) and MDM inhibitor (RITA) with doxorubicin treatment, and also observed synergy between the inhibitor SB525334 and eribulin in MDA-MB-468 cells. CONCLUSIONS:Taken together, a cell polarity/EMP-enriched shRNA library screen identified relevant gene products that could be targeted alongside current chemotherapeutic agents for the treatment of invasive BC.
Project description:Tumours contain heterogeneous cell populations. A population enriched in tumour-initiating potential has been identified in soft-tissue sarcoma (STS) by the isolation of side population (SP) cells. In this study, we compared the gene expression profiles of SP and non-SP cells in STS and identified Hedgehog (Hh) and Notch pathways as potential candidates for the targeting of SP cells. Upon verification of the activation of these pathways in SP cells, using primary tumor xenografts in NOD-SCID mice as our experimental model, we used the Hh blocker Triparanol and the Notch blocker DAPT to demonstrate that the suppression of these pathways effectively depleted the abundance of SP cells, reduced tumour growth, and inhibited the tumour-initiating potential of the treated sarcoma cells upon secondary transplantation. The data provide additional evidence that SP cells act as tumour initiating cells and points to Hh and Notch pathways as enticing targets for developing potential cancer therapies. We used microarrays to detail the difference in gene expressions between the side population cells in soft-tissue sarcoma in comparison to the bulk non-side-population cells. To examine whether certain pathways may be differentially regulated in SP cells versus non-SP cells, which represent the bulk of tumour cells, we compared the gene expression profiles of SP and non-SP cells in four primary STS tumours each from different patient. Upon surgical excision, these tumours were dissociated mechanically and enzymatically into individual cells. Via Hoechst dye staining and flow-cytometry, these primary tumour cells were sorted into distinct side population and non-side population fractions. Total RNA is extracted from an equal number of SP and NSP cell from each primary tumour. cDNA from each sample was generated from the isolated total RNA and hybridized onto Affymetrix Human Genome EukGE-WS2v4 gene chips against the same reference cDNA library. After initial processing of the raw data, using the Genespring® GX software, the expression of SP cells from each tumour was normalized against the expression of the corresponding non-SP cells. A gene list was constructed by selecting genes that were regulated in the same direction (SP vs. NSP) in all sample pairs with a fold change greater than 1.25. This list was examined using Genespring® GX significant pathway function to identify differentially regulated pathways.