Unknown

Dataset Information

0

Deep learning image recognition enables efficient genome editing in zebrafish by automated injections.


ABSTRACT: One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 ?m to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research.

SUBMITTER: Cordero-Maldonado ML 

PROVIDER: S-EPMC6322765 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications


One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a f  ...[more]

Similar Datasets

| S-EPMC6826023 | biostudies-literature
| S-EPMC10602791 | biostudies-literature
| S-EPMC6207665 | biostudies-literature
| S-EPMC9249740 | biostudies-literature
| S-EPMC8501087 | biostudies-literature
| S-EPMC6892201 | biostudies-literature
| S-EPMC10402920 | biostudies-literature
| S-EPMC10079352 | biostudies-literature
| S-EPMC8931011 | biostudies-literature
| S-EPMC8365825 | biostudies-literature