Unknown

Dataset Information

0

One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl3-Based Silicone Nanofilaments.


ABSTRACT: Superhydrophobic surfaces gain ever-growing attention because of their applicability in many (consumer) products/materials as they often display, among others, antifouling, anti-icing, and/or self-cleaning properties. A simple way to achieve superhydrophobicity is through the growth of silicone nanofilaments. These nanofilaments, however, are very often nonreactive and thus difficult to utilize in subsequent chemistries. In response, we have developed a single-step procedure to grow (SiHCl3-based) silicone nanofilaments with selective reactivity that are intrinsically superhydrophobic. The silicone nanofilaments could be further functionalized via Pt-catalyzed hydrosilylation of exposed Si-H moieties. These surfaces are easily obtained using mild conditions and are stable under hydrolytic conditions (neutral water, 24 h at 80 °C) while remaining highly transparent, which makes them well suited for optical and photochemical experiments.

SUBMITTER: Slagman S 

PROVIDER: S-EPMC6328287 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl<sub>3</sub>-Based Silicone Nanofilaments.

Slagman Sjoerd S   Pujari Sidharam P SP   Franssen Maurice C R MCR   Zuilhof Han H  

Langmuir : the ACS journal of surfaces and colloids 20181105 45


Superhydrophobic surfaces gain ever-growing attention because of their applicability in many (consumer) products/materials as they often display, among others, antifouling, anti-icing, and/or self-cleaning properties. A simple way to achieve superhydrophobicity is through the growth of silicone nanofilaments. These nanofilaments, however, are very often nonreactive and thus difficult to utilize in subsequent chemistries. In response, we have developed a single-step procedure to grow (SiHCl<sub>3  ...[more]

Similar Datasets

| S-EPMC6593149 | biostudies-literature
| S-EPMC5434029 | biostudies-literature
| S-EPMC7992087 | biostudies-literature
| S-EPMC5832778 | biostudies-literature
| S-EPMC8438665 | biostudies-literature
| S-EPMC9221071 | biostudies-literature
| S-EPMC5444522 | biostudies-literature
| S-EPMC9322084 | biostudies-literature
| S-EPMC9614724 | biostudies-literature
| S-EPMC5809608 | biostudies-literature