Unknown

Dataset Information

0

In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli.


ABSTRACT:

Background

Antimicrobial helper-compounds may reverse antimicrobial resistance. Sertraline, a antidepressant drug, has been suggested as a tetracycline helper-compound. Tetracycline is the preferred antimicrobial for treatment of enteric diseases in pigs. This study is the first to evaluate the potency of sertraline as a tetracycline adjuvant in pigs.

Methods

Forty-eight nursery pigs were divided into four treatment groups: Tetracycline, sertraline, tetracycline/sertraline or un-medicated control. Fecal and ileal samples were obtained before treatment, 48?h and nine days after five days of treatment, respectively. Colony forming units (CFU) of tetracycline resistant coliforms in each sample (ileal or fecal) and CFU of an orally inoculated tetracycline-resistant strain of Escherichia coli were determined at each sampling point. The microbiome of fecal and ileal and samples was analyzed by sequencing of the 16S V3-V4 region.

Results

The results did not provide evidence that sertraline in combination with tetracycline has any impact on tetracycline resistant bacteria in either fecal or ileum samples, while in the tetracycline treated group of pigs, an increase in the prevalence of a tetracycline resistant indicator strain of Escherichia coli shortly after ended five-day treatment was observed. The ileal samples obtained shortly after ended treatment showed treatment-associated changes in the composition of the microbiota in the groups of pigs treated with tetracycline (+/-) sertraline. While tetracycline treatment increased the abundance in the reads of E. coli, sertraline/tetracycline treatment led to increased abundances of Streptococcus spp. and decreased abundances of Lactobacillus spp. However, all observed differences (on CFU counts and microbiota composition) between groups shortly after treatment had diminished in less than two weeks after last treatment day.

Conclusions

Sertraline (+/-) tetracycline treatment did not reduce the long-term level of tetracycline-resistant bacteria in the feces or small intestine contents of piglets compared to the un-medicated control group of pigs. The result of this study reflects the importance of in vivo studies for confirmation of the antimicrobial helper-compound potential of an in vitro active compound.

SUBMITTER: Kromann S 

PROVIDER: S-EPMC6330422 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli.

Kromann Sofie S   Hvidtfeldt Anna A   Boye Mette M   Sørensen Dorte Bratbo DB   Jørgensen Steffen S   Nielsen Jens Peter JP   Olsen Rikke Heidemann RH  

BMC microbiology 20190111 1


<h4>Background</h4>Antimicrobial helper-compounds may reverse antimicrobial resistance. Sertraline, a antidepressant drug, has been suggested as a tetracycline helper-compound. Tetracycline is the preferred antimicrobial for treatment of enteric diseases in pigs. This study is the first to evaluate the potency of sertraline as a tetracycline adjuvant in pigs.<h4>Methods</h4>Forty-eight nursery pigs were divided into four treatment groups: Tetracycline, sertraline, tetracycline/sertraline or un-m  ...[more]

Similar Datasets

| S-EPMC5589974 | biostudies-literature
| S-EPMC4121323 | biostudies-literature
| S-EPMC8349558 | biostudies-literature
| S-EPMC8892705 | biostudies-literature
| S-EPMC4105395 | biostudies-literature
| S-EPMC10195191 | biostudies-literature
| S-EPMC1185357 | biostudies-other
| S-EPMC7242477 | biostudies-literature
| S-EPMC9029716 | biostudies-literature
| S-EPMC3957626 | biostudies-literature